
Natural Language Direction Following

for Robots in Unstructured Unknown

Environments

Felix Duvallet

CMU-RI-TR-15-01

January 15, 2015

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Anthony Stentz, chair

J. Andrew Bagnell
Manuela M. Veloso

Nicholas Roy, Massachusetts Institute of Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright c© 2015 Felix Duvallet. All rights reserved.

To my parents,
who have always

supported me unconditionally
in all of life’s many adventures.

iv

Abstract

Robots are increasingly performing collaborative tasks with people in
homes, workplaces, and outdoors, and with this increase in interaction
comes a need for efficient communication between human and robot
teammates. One way to achieve this communication is through natural
language, which provides a flexible and intuitive way to issue commands to
robots without requiring specialized interfaces or extensive user training.
One task where natural language understanding could facilitate human-
robot interaction is navigation through unknown environments, where a
user directs a robot toward a goal by describing (in natural language) the
actions necessary to reach the destination.

Most existing approaches to following natural language directions assume
that the robot has access to a complete map of the environment ahead of
time. This assumption severely limits the potential environments in which
a robot could operate, since collecting a semantically labeled map of the
environment is expensive and time consuming. Following directions in
unknown environments is much more challenging, as the robot must now
make decisions using only information about the parts of the environment
it has observed so far. In other words, absent a full map the robot must
incrementally build up its map (using sensor measurements), and rely on
this partial map to follow the direction. Some approaches to following
directions in unknown environments do exist, but they implicitly restrict
the structure of the environment, and have so far only been applied
in simulated or highly structured environments. To date, no solution
exists to the problem of real robots following natural directions through
unstructured and unknown environments.

We address this gap by formulating the problem of following directions in
unstructured unknown environments as one of sequential decision making
under uncertainty. In this setting, a policy reasons about the robot’s
knowledge of the world so far, and predicts a sequence of actions that
follow the direction to bring the robot towards the goal. This approach
provides two key benefits that will enable robots to understand natural
language directions. First, this new formulation enables us to harness
user demonstrations of people following directions to learn a policy that
reasons about the uncertainty present in the environment. Second, we
can extend this by predicting the parts of the environment the robot has
not yet detected using information implicit in the given instruction.

v

In this dissertation, we first show how robots can learn policies that
reason about the uncertainty present in the environment. We describe an
imitation learning approach to training policies that uses demonstrations
of people giving and following directions. During direction following,
the policy predicts a sequence of actions that explores the environment
(discovering landmarks), backtracks when necessary (if the robot took a
wrong turn), and explicitly declares when it reaches the destination. We
show that this approach enables robots to correctly follow natural language
directions in unknown environments, and generalizes to environments not
encountered previously.

Building upon this work, we propose a novel view of language as a sensor,
whereby we “fill in” the unknown parts of the environment beyond the
range of the robot’s traditional sensors using information implicit in
the instruction. We exploit this information to hypothesize maps that
are consistent with the language and our knowledge of the world so
far, represented as a distribution over possible maps. We then use this
distribution to guide the robot, informing a belief space policy that infers
a sequence of actions to follow the instruction. We find that this use of
language as a sensor enables robots to follow navigation commands in
unknown environments with performance comparable to that of operating
in a fully-known environment.

We demonstrate our approach on three different mobile robots operating
indoors and outdoors, as well as through extensive simulations. Together,
learning policies and reasoning directly about the unknown parts of the
environment provides a solution to the problem of following natural
language directions in unstructured unknown environments. This work
is one step towards allowing untrained users to control complex robots,
which could one day enable seamless coordination in human-robot teams.

vi

Acknowledgments

“Piled Higher and Deeper” by Jorge Cham www.phdcomics.com

In many ways, research is like climbing a mountain. Graduate school has
been quite the journey, one that in many ways has paralleled my journey
as a climber. I started climbing in earnest during my first year of graduate
school, and by now the similarities between research and climbing are
very apparent. Both have many ups and downs along the way, but at the
end of the day the best you can do is work on one step at a time. The
goal (be it a summit or new robot capability) is often clearly visible from
far away, but the individual actions required to get there are far from
obvious. Doing research and climbing a mountain require a lot of effort
and planning, and usually involve plenty of suffering to get there. You can
generally be assured things will not go according to plan, so remaining
flexible in the face of bad results (or bad weather on a climb) has taught
me a lot. That said, in my experience even the toughest adventures have
always been worth it, and grad school has been no exception to this rule.

I believe it’s the people you meet along the way that make all the difference.
I have been lucky to work with some incredibly talented people during
graduate school, beginning with my advisor Tony Stentz. Tony has been
a great mentor on this journey, and his research vision and insights about
challenging problems are unrivaled. Thank you for pointing the way,
equipping me with the right resources and support, and letting me figure
out the rest on my own.

The rest of my committee has been a great resource, from suggesting
interesting research ideas to facilitating collaborations with people and
robots. Thank you Drew, Manuela, and Nick for your incredible support

vii

www.phdcomics.com/comics/archive.php?comicid=1464

throughout the years. Thanks also to Sanjiv Singh and George Kantor,
you were important early mentors who introduced me to robotics research
during my undergraduate years, and this shaped the path I am on today.

Partnerships are a critical aspect of both research and climbing, and
I have been fortunate to work with (and learn from) some excellent
roboticists through my graduate student career. This dissertation would
not have been possible without excellent collaborations with (superscripts
indicate chapter numbers) Alexander Grubb3, Stefanie Tellex3, Thomas
Kollar3, Matt Walter5,7, Tom Howard5,7, Sachi Hemachandra5,7, Jean Oh8,
Abdeslam Boularias8, and Bob Dean8. Looking back, I can safely say my
most fruitful research was the result of these collaborations.

Seeing peers learn and struggle alongside me has been a great source
of hope and comfort. Thanks to all of the Robotics Institute graduate
students for the many hours working on assignments, projects, sitting
through practice talks, or sometimes even relaxing. Thanks especially
to Nathan Brooks, Michael Furlong, Scott Satkin, David Silver, Chris
Skonieczny, Boris Sofman, Alex Styler, Breelyn Kane Styler, Nathan
Wood, and the numerous talented people I have left off this list to save
some room for the technical content: it has been great learning from
(and with) you. The community of students at the Robotics Institute is
incredibly strong, and this has been a big part of my experience. Thanks
to Drew’s LAIRLab group for accepting me as an unofficial member.
Additionally, I would not be where I am today without countless hours
spent in the CMU Robotics Club as an undergraduate, thanks especially
to Steve Shamlian, Pras Velagapudi, and the many people I worked with
as part of the Colony project.

Carnegie Mellon is a very special to do research, in large part because of
the amazing resources available here. Thanks to the various organizations
who have facilitated (or sometimes forced) social interaction: the Graduate
Student Assembly, Dec5, and RoboOrg. The All University Orchestra and
the CMU Explorers Club provided much-needed distractions. A special
shout out to the Global Communication Center for running excellent
workshops, and especially Doug Phillips for his many hours spent reading
and suggesting improvements to this dissertation, and helping me distill
complicated ideas into a clear and (hopefully) intelligible format.

I am deeply convinced the Robotics Institute would self-implode if it was
not for the many amazing people who work tirelessly to reduce the entropy

viii

we graduate students bring, and I especially want to thank Cindy Glick,
Sumitra Gopal, Alan Guisewite, Jean Harpley, Suzanne Lyons-Muth,
Peggy Martin, and Sanae Minick. You keep the ship sailing so we can
focus on fixing robots. NREC computing has also been a tremendous
resource, especially when my laptop died less than a month before my
defense (fortunately, all backed up). Truly, the resources afforded by
CMU and the Robotics Institute have made this journey possible and
even pleasant.

I hope to have contributed to this in a small way by starting the RI-meta
seminar, a new series of talks dedicated to covering the higher-level (meta)
topics we all use as researchers. Thanks to all of the inaugural speakers:
Sanjiv Singh, Siddhartha Srinivasa, Jessica Austin, Illah Nourbakhsh,
Matt Mason, and Manuela Veloso. I sincerely hope it has been as helpful
to other students as it has been to me, and that these talks continue in
the future.

Thanks to the many StackOverflow communities I have consulted over the
years, especially the LATEX Stack Exchange; designing – and typesetting –
the figures and plots in this dissertation was a labor of love (emphasis on
labor).

The last parallel between research and climbing is probably the most
important: while the summit looks like the end of the journey, it is really
the beginning. The best part about any adventure (be it research or a
mountain) is not achieving that goal: it is what you learn on the journey
and the partnerships you create along the way. In the end, it is all just a
preparation for the next adventure. Onward!

ix

A different kind of research: alpine climbing in Canada.

x

Funding

This work was supported in part by grants from several organizations,
including the National Science Foundation under a Graduate Research
Fellowship, the Office of Naval Research under MURI grant “Reasoning in
Reduced Information Spaces” (no. N00014-09-1-1052), and the Robotics
Consortium of the U.S. Army Research Laboratory under the Collaborative
Technology Alliance Program (Cooperative Agreement W911NF-10-2-
0016).

xi

xii

Contents

1 Introduction 1
1.1 Thesis Problem . 3
1.2 Summary of Thesis Approach . 5

1.2.1 Technical Formulation . 8
1.2.2 Thesis Statement . 10
1.2.3 Metrics . 11

1.3 Thesis Outline . 12

2 Background 13
2.1 Natural Language Understanding for Robots 13

2.1.1 Following Directions through Known Environments 14
2.1.2 Following Directions through Unknown Environments 20
2.1.3 Other Related Language Understanding Problems 23
2.1.4 Comparison of Problem Space Features 26
2.1.5 Summary . 28

2.2 Imitation Learning . 28
2.3 Belief Space Reasoning . 30
2.4 Active Exploration . 33
2.5 Semantic Mapping . 33
2.6 Summary of Background . 35

3 Following Directions in Unknown Environments 37
3.1 Modeling Spatial Language . 40
3.2 Modeling Partially Known Environments 42
3.3 Policy Representation . 46
3.4 Feature Representation . 52
3.5 Chapter Summary . 56

4 Imitation Learning in Unknown Environments 59
4.1 Formulation as Online Learning . 60
4.2 Training in Unknown Environments 62
4.3 Learning to Recover from Mistakes 63
4.4 Computing the Expert’s Policy . 64
4.5 Results on a Corpus of Indoor Directions 69

xiii

4.5.1 Methods . 69
4.5.2 Quantitative Results . 72
4.5.3 Qualitative Results . 77

4.6 Chapter Summary . 81

5 Inferring Maps and Behaviors from Natural Language 83
5.1 Overview . 85
5.2 Natural Language Understanding . 90
5.3 Semantic Mapping . 94
5.4 Chapter Summary . 100

6 Reasoning and Learning in Belief Space 103
6.1 Belief Space Reasoning . 105
6.2 Imitation Learning in Belief Space . 108
6.3 Results . 110
6.4 Chapter Summary . 116

7 Integrated Demonstrations on Autonomous Indoor Robots 119
7.1 Generalization to Novel Environments on CoBot 123
7.2 Demonstration of Semantic Map Inference on the Husky Robot . . . 128
7.3 Demonstration of Belief Space Policy on the Autonomous Wheelchair 132
7.4 Simulated Belief Space Experiments with Parameter Variation 140
7.5 Discussion . 143

8 Integrated Demonstrations on an Autonomous Outdoor Robot 145
8.1 System Overview . 147
8.2 Experimental Results . 154
8.3 Chapter Summary . 156

9 Summary, Contributions, and Future Work 157
9.1 Dissertation Summary . 158
9.2 Contributions . 160
9.3 Future Work . 164
9.4 Conclusions . 171

A Corpora of Natural Language Directions 173
A.1 Corpus of Basic Natural Language Directions 173
A.2 Corpus of Complex Natural Language Directions 178

Bibliography 181

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xiv

List of Figures

1.1 Robots and sample natural language commands used in this thesis. . 2
1.2 Approach formulation as sequential decision making 7

3.1 Running example for illustration. 43
3.2 Topological layer for the running example. 44
3.3 The semantic layer of the map is a set of semantically annotated objects. 45
3.4 The policy state updates as the robot travels through the environment. 47
3.5 Actions are places the robot can go next. 48
3.6 Illustration of multiple actions paired with several landmarks. 49
3.7 The policy chooses a single action to execute on the robot. 51
3.8 Computing features for an action . 53

4.1 Iterative imitation learning formulation 65
4.2 Sequence of computed and demonstrated actions. 67
4.3 Map of Stata Center at MIT. 68
4.4 Success rate curves for various system ablations. 75
4.5 Average ending distance error over 200 cross-validation trials. 76
4.6 Average success rate for all distance thresholds. 77
4.7 Sequence of decisions for following one direction. 78
4.8 Distance loss for each iteration of DAgger 79
4.9 Evolution of policy over several iterations 80

5.1 User commanding a wheelchair. 84
5.2 Visualization of the belief evolution. 87
5.3 Outline of the semantic planning framework. 89
5.4 Annotation inference. 91
5.5 Behavior inference. 92
5.6 Two possible behavior groundings for one command. 93

6.1 Belief space approach formulation as sequential decision making . . . 104
6.2 Illustration of computing feature moments. 107
6.3 Ground truth path for a direction containing navigational information 112
6.4 Sequence of policy decisions using navigational information. 113
6.5 Sequence of policy decisions without using navigational information. 115

xv

6.6 Average ending distance error, with and without belief space reasoning. 117
6.7 Average success rate for all distance thresholds. 117

7.1 Robots used in indoor experiments 120
7.2 Floor plan of the Gates-Hillman Center at CMU. 124
7.3 Trace of successful CoBot run. 125
7.4 Trace of a run where CoBot made an error and backtracked. 126
7.5 Robot and operator viewpoints of the same environment 129
7.6 Visualization of the landmark distribution over time. 134
7.7 Evolution of the semantic map for one run on the wheelchair. 138
7.8 Full map of the environment. 139
7.9 Semantic mapping simulated results across various sensing ranges. . . 141

8.1 Husky robot platform . 146
8.2 Our intelligence architecture for human-robot teams. 147
8.3 Annotated TBS command . 148
8.4 Perception on the Husky robot . 150
8.5 Building and landmark prediction. 151
8.6 Learned navigation cost functions . 153
8.7 Navigating to various goals with the Husky. 155

A.1 Verbs and spatial relations used in the basic corpus of directions. . . . 174
A.2 Statistics for directions in the basic corpus. 175
A.3 Landmarks used in the basic corpus of directions. 177
A.4 Navigation information in the corpus of complex directions. 178
A.5 Statistics for directions in the complex corpus. 179

xvi

List of Tables

2.1 Comparison of domain space features. 27

3.1 Symbols used in policy formulation. 38
3.2 Sequence of SDCs for a command . 41
3.3 Components of the semantic map St at time t. 43

4.1 Validation results on held out set of directions. 73
4.2 Effect of feature ablations on same validation set. 75

5.1 Symbol definitions for map and behavior inference. 87
5.2 Extended Spatial Description Clauses for a command. 89

7.1 Experimental results on the Husky. 130
7.2 Experimental results on the wheelchair in an open environment . . . 133
7.3 Experimental results on the wheelchair in an office environment. . . . 136
7.4 Performance of our approach reasoning about objects in simulation . 140
7.5 Performance of our approach reasoning about regions in simulation . 142

8.1 Commanded TBS used in the experiments. 154
8.2 Overview of results on the Husky robot platform. 155

xvii

xviii

Chapter 1

Introduction

It is not the mountain we conquer,

but ourselves.

Sir Edmund Hillary

Robots are increasingly moving out of controlled isolation and into our homes

and workplaces, where they will work alongside people on collaborative tasks. This

increase in human-robot interaction brings about a much larger need for interaction

modalities that do not require complicated interfaces, extensive training, programming

knowledge, or specialized environments. Enabling robots to understand natural

language instructions holds the promise of enabling lay users to control complex

robots in an intuitive way, and could one day facilitate seamless coordination in

human-robot teams.

One instance of a task where understanding language could bring about a flexible

way to convey a complex behavior is navigation through previously unknown environ-

ments, where a person could direct the robot towards an unknown goal by describing

how to reach it, just as they would explain to another person. For example, each of

the robots in Figure 1.1 could be directed to a new destination using the language

commands shown.

Prior approaches to this problem fall into two broad categories: approaches that

require the map be fully-known ahead of time, and approaches that do not require a

map but have only been applied in structured environments. Approaches that assume

1

1. Introduction

“Go to the hydrant
behind the cone.”

(a) Husky

“Go past the
elevator, turn
left towards
the kitchen.”

(b) COBOT

“Go past the
kitchen that is

down the hall and
then take a right.”

(c) Autonomous wheelchair

Figure 1.1: Three different robots and sample natural language commands used in
this thesis. Our goal is to enable robots to autonomously follow natural language
commands given in unstructured unknown environments.

2

1. Introduction

an annotated map is available a priori require collecting a complete map, which can

be costly and time consuming. This is unrealistic in many scenarios, from robots

operating in the home to disaster sites. On the other hand, approaches to direction

following that do not require a map have so far only been applied to simulated or

otherwise highly structured environments. This is because these approaches translate

the command into a sequence of formal specifications of robot behavior and require

the environment to match exactly what is expected by the specification; this makes

these approaches ill-suited for complex maps and brittle to different environments.

To date, no solution exists to the problem of following natural language directions

through unstructured and unknown environments.

1.1 Thesis Problem

This thesis focuses on the problem of enabling robots to understand and follow

natural language directions through unstructured unknown environments. We assume

the robot has no prior map of the environment, nor do we make any assumptions

about the complexity of the environment. In other words, a robot is put in an

environment it has never seen or knows anything about, and is then given a natural

language instruction that will bring it to a destination it has never been to. Following

directions in unknown environments is an especially challenging problem because

the robot only has access to a partial representation of the environment, one that is

built up incrementally using the robot’s perception system as it moves through the

environment and receives sensor measurements. Traditional planning approaches of

searching for complete paths that agree with the instruction are impossible without a

complete map of the environment.

Instead, the robot must reason about a partial world model, and make a sequence

of decisions that utilize the incomplete information available. One of the main

challenges in this setting is that the actions or landmarks required for execution

may not have realizations when the robot begins its execution. For instance, the

robot’s initial actions may be exploratory and appear to be incorrect. Furthermore,

as the robot explores the environment it may take a wrong turn, and the robot must

backtrack once it realizes it made a mistake. Finally, once the robot believes it has

reached the destination it must explicitly declare it is done following the direction,

3

1. Introduction

even though there are still un-explored parts of the environment.

For example, consider the robot and instruction in Figure 1.1b. Given the robot’s

limited field of view, it may not initially be able to see the elevator so it must explore

the environment to build up its partial map. As it is looking for the elevator the

robot might appear as it were lost, and if it goes in the wrong direction and reaches a

dead end without finding the elevator it must backtrack. When the robot eventually

reaches the kitchen, it must explicitly decide it has finished following the command

even though there might be another kitchen in the environment which an ambiguous

command could have been referring to.

All of these challenges are in addition to dealing with complicated or vague or

ambiguous spatial language, and operating in complex unstructured environments.

While people are generally good at dealing with these trade-offs while following

directions, autonomous robots currently do not have this capability. This thesis

addresses these challenging issues, summarized in the following problem:

Thesis Problem: Autonomous robots with realistic perception cannot

yet follow natural language directions through unstructured unknown

environments.

With this problem in mind, we now list the assumptions we make in order to restrict

the complexity of the problem space.

Scope of Thesis Problem

We do not restrict the types of environments in which the robot can operate, indoor

or outdoor, nor do we require that a map be available ahead of time. Our only

requirement is that the robot is able to build a metric map of its environment as

it operates, and can enumerate paths within it. We represent a combined semantic,

topological, and metric map to efficiently reason about potential actions in the

environment, but this is not a requirement of our approach.

Additionally, the robot needs to be equipped with a perception system that can

perform object detection for a pre-defined set of object categories, returning both

semantic labels and object geometry for the detected objects. As the focus of this

thesis is not perception, our approach does not explicitly reason about detection

likelihoods, confidence bounds, or false positives and negatives, although these can be

4

1. Introduction

present in the implementation. The robot need not be able to detect every possible

landmark that could be described by the directions, nor do their labels need to match

exactly what is mentioned in the directions (for example, a couch or chair could be

detected as a “seat” by the robot). Obviously, any sensor available must respect

physical constraints such as line of sight and maximum sensing range.

While we do not explicitly restrict the types of language commands that can

be given to the robot, our work focuses on simpler commands that do not have

complicated hierarchical clauses, negations, counting references, etc. We choose to

focus on sequential task-constrained natural language directions that a person could

reasonably follow in a new environment without a problem (for example, see the

directions shown in Figure 1.1). Because of differences in perception capabilities (or

viewpoints) between the person giving directions and the robot, the robot will still

have to reason about ambiguity, as well as differences between landmarks names in

the command and those returned by perception. Finally, our approach will assume

access to people who are able to give and follow directions that are expressed in

task-constrained natural language.

1.2 Summary of Thesis Approach

Because we are operating in unknown environments without access to a complete map,

we frame the problem of understanding natural language route directions as inferring

a sequence of actions in the world. This formulation as sequential decision making

under uncertainty relies on a policy that predicts one action given the knowledge about

the world so far. Executed on the robot, these actions can explore the environment

(to discover new landmarks or regions of the environment), backtrack to a previously

visited location (if the robot took a wrong turn), and explicitly declare when the

policy believes it has finished following the direction. Each action moves the robot to

a different location in the environment, which will build up its partial map of the

environment.

While robots do not yet have the capability to follow natural language directions

in unstructured unknown environments, people are quite good at it. We leverage this

fact to learn the policy from people through imitation learning, using demonstrations

of people giving and following directions. This formulation is especially well suited

5

1. Introduction

for unstructured environments, where engineering a system that can reason about the

large number of variations present during direction following would be difficult and

time consuming. Additionally, we are able to use a recent imitation learning framework

to include examples that contain mistakes not present in the demonstrations. This

enables the policy to learn how to recover from errors, for example, if the robot takes

a wrong turn. Our results show that we are able to train policies that can follow

complete directions through unstructured indoor environments, as well as anecdotal

evidence of policies that generalize to different environments. We also apply our

approach to operate in complex unknown outdoor environments, by learning in the

space of planner cost functions.

We then extend this work to handle complex instructions that also convey infor-

mation about the world (in addition to providing an instruction for the robot). For

example, a direction such as “go to the kitchen that’s down the hall” provides some

information about the location of the kitchen, even though the robot may only be

able to see part of the hallway. Utilizing this information is especially important in

our map-less setting, as sensor range severely limits our knowledge of the world. We

exploit the information implicit in the command to infer a distribution of possible

maps that are consistent with the language and our knowledge of the world so far,

effectively using language as a sensor that can build (uncertain) maps. This enables

us to hypothesize the location of landmarks and “fill in” the unknown parts of the

environment beyond the robot’s sensor range. The policy then has more information

to decide where to go, while still remaining flexible if our hypotheses turn out to

be incorrect (for example, due to ambiguity in the language or perception errors).

However, the policy must now reason in the belief space of the location of landmarks,

and we present a novel belief space imitation learning algorithm that learns to reason

about distributions using imitation learning and kernel distribution embeddings.

Research Agenda

We have addressed the following questions in our research agenda:

• How can autonomous robots successfully follow directions through completely

unknown environments?

• How can we formulate direction following in partially-known environments as

6

1. Introduction

World model

Policy

Action

Observation

State,
Actions

argmin cost(action)

Robot motionMap updates

Figure 1.2: Basic approach formulation as sequential decision making: given a partial
world model, we enumerate a set of actions that represent places we can go next.
The policy evaluates all actions, and chooses the one with the lowest cost. The robot
moves and receives a new observation about the world. This updates our partial
world model, and we repeat the entire process.

sequential decision making so that a policy can efficiently make a sequence of

decisions?

• How can we learn a policy from human demonstrations that can reason about

the uncertainty present in unknown environments, recover from errors, and

explicitly declare when it has finished following the directions?

• How can we exploit the information implicitly contained in directions to hypoth-

esize maps that encapsulate the direction giver’s knowledge about the parts of

the environment that have not yet been observed by the robot?

• How can we extend our policy formulation to efficiently utilize this distribution

of maps during decision making?

We now summarize the technical formulation of our approach.

7

1. Introduction

1.2.1 Technical Formulation

Our formulation of direction following as sequential decision making relies on a

policy π that will select a sequence of actions that best agree with the direction,

given the policy’s knowledge of the world so far. By introducing a cost function

that measures the agreement with the direction, we can formulate this as minimizing

the cost of the next action (out of all available actions) at time t, given the natural

language instruction and the world known so far:

π = argmin
actionst

cost (action | language,worldt) . (1.1)

Each action can be thought of as a “next place” to go, and actions can explore new

parts of the environment, or backtrack to somewhere the robot has already been.

Additionally, a special action declares that the policy has completed following the

direction. Under this general formulation, the policy will cycle between selecting the

lowest-cost action, moving in the world, receiving new observations, and updating

its world representation, until the stop action is called. This formulation, shown in

Figure 1.2, enables us to reason about a sequence of decisions instead of searching for

a complete path, which would be impossible given the lack of a complete map of the

environment.

To effectively follow directions, we now need four things:

1. A compact representation for partially-known environments (state).

2. An enumerated set of next places to move in the environment (actions).

3. A cost function that represents how well any state-action pair agrees with the

direction (policy).

4. A way to learn this policy using demonstrations of people giving and following

directions (imitation learning).

We represent the partially-known map at time t using a semantic map St that contains

the location of all previously visited locations, as well as the semantically annotated

objects that were previously detected. This map represents our knowledge of the

world so far, and also keeps track of frontiers, which are locations that lie between the

explored and unexplored space and could lead to new areas. The complete state of

8

1. Introduction

the system consists of this map, our current location x, and the linguistic utterance Λ.

We represent the set of actions At as paths in the environment: paths that end

at frontier nodes are exploratory, paths that end at previously visited locations are

backtracking actions, and a path that ends where the robot is currently is the stop

action. Given the set of allowable actions, the policy evaluates each one according to

a cost function c, and selects the action with the lowest cost:

π (x) = argmin
a∈At

c (x, a |Λ, St) . (1.2)

To train the policy, we collect examples of people giving and following directions.

We then learn the cost function such that it attempts to agree with the expert

demonstrations over all training examples. This will be done using a loss function `

that penalizes disagreements between our policy π and the expert’s policy π∗ from

the same state:

` (x, π∗, π) ∝
∑

examples

π (x) 6= π∗ (x) . (1.3)

Intuitively, if our policy agrees with the expert’s policy in all possible states then

we will not make any errors in direction following. However, since we are only given

access to traces of the expert’s policy (i.e. paths in the environment), we will need to

derive the expert’s policy π∗ from these demonstrations. This will allow us to include

training examples of recovering from failures (even if the demonstration didn’t include

such an example), and enable the policy to learn how to recover from mistakes.

Rather than reason over the entire instruction at one time, we exploit the sequential

nature of spatial language to decompose the problem into a sequence of several simpler

problems:

Λ→ [Λ0, . . . ,ΛN] , (1.4)

where the policy now only has to reason over a single element Λi in the sequence.

This allows us to require Equation (1.2) as:

π (x) = argmin
a∈At

c (x, a |Λi, St) . (1.5)

Furthermore, we will extract a structured clause from each sub-utterance, enabling

us to understand the meaning of the command. More specifically, this enables us to

9

1. Introduction

understand the verb that was commanded, any landmarks mentioned in the utterance,

and spatial relationships between the desired path and the landmark in the direction.

A key insight of this work is that each utterance Λi contains two types of informa-

tion: explicit information that tells the robot where to go, and implicit information

that may not be strictly required for correctly following the direction yet conveys

useful knowledge about the environment. We exploit this implicit information in

Λ (in addition to the history of sensor observations zt) to generate a distribution

over semantic maps: p (St|Λ, zt). This is essentially representing a distribution over

possible environments, where the area beyond the robot’s sensor range is hypothesized.

While the policy formulation remains essentially unchanged, it must now reason over

a distribution of semantic maps:

π (x) = argmin
a∈At

c
(
x, a |Λi, p

(
St|Λ, zt

))
. (1.6)

The policy embeds the distribution of semantic maps using a kernel distribution

embedding. This solution remains efficient in the presence of map uncertainty, and

we can apply our imitation learning formulation in this space.

1.2.2 Thesis Statement

Together, the formulation as sequential decision making under uncertainty combined

with the ability to reason directly about the unknown parts of the environment

provides a solution to the problem of direction following in unstructured unknown

environments. Our thesis statement follows:

10

1. Introduction

Thesis Statement:

Following natural language directions through unstructured unknown

environments can be formulated as sequential decision making under

uncertainty, and can be solved using a policy learned from human demon-

strations.

Furthermore, language can be used as a sensor; this enables robots

to infer a distribution of maps that extends beyond their perception

range. By extending the policy to reason in belief space, robots can

follow complex natural language directions in unknown environments

with performance that approaches operating with a known map.

This thesis enables robots with realistic perception systems to autonomously follow

directions expressed in natural language through unstructured unknown environments.

This work is one step towards allowing untrained users to control complex robots,

which could one day enable seamless coordination in human-robot teams.

1.2.3 Metrics

To evaluate the performance of our system, we will use several metrics. Most

importantly, we will measure the ending distance from the correct final destination.

We consider the resulting path for a direction successful if it ends within some distance

of the correct destination (for example, within 5 m). This is the primary success

metric, as following directions correctly is the main goal of this thesis. We will also

measure the path length taken to reach the destination (compared to a direct path),

which enables us to evaluate the effect of exploration and backtracking. Minimizing

extra distance traveled is a secondary goal.

By ablating parts of our direction following system, we will compare our approach

against different baselines to quantify the importance of the various components in

our system. For example, we can consider complete and incomplete semantic maps,

full and partial feature spaces, or following directions with and without belief space

reasoning. These will provide insights into what is most important when designing a

direction following system for unknown environments.

11

1. Introduction

1.3 Thesis Outline

We begin this dissertation by reviewing prior approaches to similar problems, as well

as relevant related work in a variety of disciplines in Chapter 2. We then dive into

our technical approach: we first show in Chapter 3 how natural language direction

following in unknown environments can be formulated as sequential decision making

under uncertainty, where a policy predicts the next best action to take given the

world seen so far. This formulation relies on a policy that is able to evaluate the cost

of all available actions, and selects the one with the lowest cost. While this policy is

compact and has a simple form, it must take into account all relevant aspects of the

direction, environment known so far, and the action to take. This is encapsulated in

our feature representation, which we will describe in more detail. We also describe the

properties of spatial language that enable us to decompose this problem into smaller

sub-problems. We then show how to learn the policy through imitation learning,

using demonstrations of people both giving and following directions in Chapter 4. In

that chapter we also provide results of our approach to following natural language

directions in unknown environments.

Expanding upon this work, we then propose a novel view of language as a sensor

that can be used to infer maps beyond the range of traditional sensors (such as

cameras and laser range finders) in Chapter 5. While this approach enables us to

use more of the information contained in the natural language direction, it generates

a distribution of maps that the policy must now reason about. To address this,

in Chapter 6 we describe extending our policy to reason over the space of map

distributions, and also how to learn a belief space policy (again using imitation

learning).

A major strength of this work is its broad applicability to mobile robots across

a variety of platforms, sensor suites, and environments. Chapters 7 and 8 describe

integrated demonstrations on the three robots shown in Figure 1.1, operating both

indoors and outdoors. We finish in Chapter 9 with a summary of this dissertation,

highlight its contributions to the field, and discuss avenues for future research.

12

Chapter 2

Background

One day’s exposure to mountains is better

than a cartload of books.

John Muir

This work draws upon – and is inspired by – state of the art research in many

different areas, both within and outside of robotics. We first relate our problem to prior

approaches to natural language understanding for robots (Section 2.1), and highlight

the novelty of our problem. As the focus of this thesis is primarily on direction

following, we will focus on approaches to this problem. We then discuss related work

in a variety of other areas that will be applicable to our solution (Sections 2.2 to 2.5):

we will draw from work in imitation learning, belief space planning, active exploration

of unknown environments, and semantic mapping.

2.1 Natural Language Understanding for Robots

While people naturally communicate and collaborate using language, for the most

part complex robots are still operated by users with extensive training, through

programming instructions, or with very specialized interfaces. If robots are ever to

be ubiquitous and controllable by lay users, we must introduce new modalities for

controlling complex autonomous systems [162].

In collaborative tasks, people have been shown to prefer communicating using

13

2. Background

speech, whether it is compared against written and typed instructions [110] or other

traditional computer-based modalities [134]. While speech as an input modality has

been studied for computer systems such as speech-to-text transcription, personal

digital assistants (e.g., Siri and Google Now), automated phone dialogue, and many

others, the majority of applications to date have not been physically situated: speech

and natural language have not yet become widely used to control robots. A significant

barrier for robots to understand natural language lies in the symbol grounding

problem: connecting symbolic objects with their corresponding real world counterparts

in the environment [54]. For grounding in natural language directions through an

environment, the symbols (linguistic terms) for objects, verbs, and spatial relationships

must be mapped onto the corresponding real world objects and actions.

In this section we will focus primarily on work towards understanding natural lan-

guage directions. Specifically, we will review work on understanding spatial language

directions, which describe (in natural language) the actions necessary to reach a des-

tination. Within this field of work, approaches have tackled two main sub-problems:

(1) direction following in unstructured (but known a priori) environments, and (2)

direction following through unknown (but structured) environments. Approaches

to these two main sub-problems will help us better understand the main challenges

of following directions through unstructured and unknown environments, and will

inform much of our approach in this novel problem space.

2.1.1 Following Directions through Known Environments

When a complete map of the environment is available a priori, it is possible to search

for complete paths (from the robot’s starting location to any possible destination)

that match the natural language instruction. Since the entire map is available, it is

possible to optimize the entire trajectory globally, utilizing all possible landmarks in

the environment and the entire direction.

The actual details of approaches to this problem vary from sequencing hand-tuned

action primitives, inferring formal controllers or reward functions, applying reinforce-

ment learning, or structuring the problem as inference in a graphical model. Because

they all assume a known map and perform global inference, they are able to reason

successfully about natural language directions in very unstructured environments.

14

2. Background

Engineered Action Primitives

It is possible to use action primitives that describe the intent of the natural language

direction, represented as a set of rules that can be executed by the robot (or planner).

One instance of this is work by Levit and Roy [86] that maps language to basic

semantic components called Navigational Information Units that are essentially hand-

generated rules describing the desired shape of the path. These procedures include

moving around an object, moving to absolute locations in the map, turning, and

verifying closeness to a given landmark. Complete paths are generated from these

semantic components using a Dynamic Programming approach. The authors created

a system that can follow directions in the MAP-TASK scenario, a corpus of maps

and natural language directions [5]. A very similar approach has also been used

to generate paths in known indoor environments [44]. Our approach bypasses the

need for this intermediate representation, reducing the amount of engineering effort

required.

Route Graphs are a similar formalized representation of the natural language

command that use a sequence of parameterized rules that represent desired turns,

landmarks where these turns can take place, and goals [106]. In fully-known environ-

ments, these sequences can be combined using fuzzy rules and evaluated for entire

paths using search trees [95] or particle filters [84]. For the most part, evaluating

the fitness of a path requires hand-tuned functions for each possible rule. Recent

work by Landsiedel et al. [84] focuses on automatically learning to label places in the

environment and a probabilistic model for the route descriptions.

Formal Controller

Another representation for the desired robot behavior are plans based in formal logic,

studied by Kress-Gazit and colleagues [76, 77]. Their approach translates structured

natural language into formal logical specifications of the task (in this case Linear

Temporal Logic), which they use to generate controllers that will execute the desired

command. This approach of using formal logical specification provides verification

guarantees on task success if the task is feasible, and can generate explanations when

a task is unachievable [87, 120]. However, doing so requires a complete map of the

environment and the types of input commands in these approaches are closer to a

15

2. Background

programming language than natural language.

Reward Functions

Instead of mapping language to individual components such as action primitives or

controllers, other approaches reason at a more global level by converting language to

reward functions that are optimized using a planner to generate the desired behavior.

Recent work has investigated translating instructions in English to a reward function

in a Markov Decision Process (MDP) with formal action specifications [89, 90]. This

approach uses statistical machine translation and Expectation Maximization and the

authors have applied this to simple tasks in abstract known environments. Users

are able to specify high-level natural language instructions, then a simulated robot

translates the command to abstract reward functions. Our approach also learns

a reward function (as part of the policy), but their approach requires a complete

map and MDP formulation of the problem. Furthermore, the action specifications

used in this approach are essentially the same as the action primitives above, so

this approach still requires engineering effort to design the actions and their specific

reward functions. Our approach is more general in that it does not require a world

map or action primitives.

Policy-Based Approaches

Along the lines of learning reward functions for following directions, some approaches

learn the value function in a policy, using reinforcement learning. For example, Vogel

and Jurafsky [167] used Reinforcement Learning in the MAP-TASK corpus to learn

a policy that grounds both spatial and linguistic components of the directions. They

define a state and action representation that encompasses landmarks and cardinal

directions, and learn the correspondence between the language and features of the

path through a value function. This value function can then be used by a policy to

follow directions. They assume complete knowledge of the map during training and

testing. Our work is similar to this approach in a few respects: we use a policy to

choose a sequence of actions, and compute features of paths to generalize to new

scenarios. However, the MAP-TASK scenario only provided a discrete number of

well-identified landmarks [5] so both of these approaches place constraints on the

16

2. Background

number of possible actions, making this a structured known environment.

Andreas and Klein [8] present an extension of this work to learn a grounded

representation of the path directly from the language. Although this work requires a

complete map of the environment, it does not limit the possible action space or rely on

pre-specified procedures. They are also able to learn groundings for other interesting

tasks, such as naming colors and textually describing the time series behavior of stock

prices. Like these reinforcement learning based approaches, we will learn the meaning

of words using a feature representation, but we will do so in an unknown environment

with many more possible actions.

Graphical Model Formulations

Some approaches attack the grounding problem almost literally by formulating the

problem of following directions as inference in a graphical model. For example, by

treating direction following as sequence labeling, Shimizu and Haas [138] train a

Conditional Random Field (CRF) that maps instructions to an action sequence

through a known environment. Although we also treat direction following as a

sequential prediction problem, our policy does not have access to a complete map.

Furthermore, their approach only utilizes a graph representation of the world (with

no landmarks), so the types of directions that can be represented is restricted.

The state of the art end-to-end direction following system is the recent work

of Kollar, Tellex, and colleagues that also formulates the problem as inference in

a graphical model [61, 73, 74]. Their approach extracts semantic structures called

Spatial Description Clauses (SDCs) from language and plans a complete path through

a known environment by grounding actions, places, and landmarks in the language

to their respective components in the semantic world representation. A graphical

model called the Generalized Grounding Graph (G3) then infers the complete path

that best corresponds to the instruction. This approach uses a set of spatial features

to reason about the relationships between paths and landmarks [157], and several

linguistic components to reason about the similarity between objects in the world

and landmarks described in the command [72] that uses WordNet [45, 101]. Recent

work extends the grounding graph to include paths and events, which can be used for

mobile manipulation [158].

17

2. Background

This approach is related to ours in that we share the same semantic descriptions

of language (SDCs) and some features, but we frame direction following using a

fundamentally different approach. While their approach is to plan a path through

a known environment, our approach is explicitly designed to operate in unknown

environments by learning a policy that reasons about uncertainty and generates a

sequence of short-horizon actions (reasoning about the information currently available).

Additionally, by training directly in unknown environments we learn a policy that

can recover from mistakes by backtracking.

While their approach assumes a complete labeled map is known a priori, Kollar

et al. [73] present very preliminary results using their globally-trained model on partial

map information that is built up as the robot moves in the environment, using a greedy

local inference algorithm. This approach (with no prior map) yields significantly

worse performance on their corpus of directions than the global search [73]. This is

likely due to a fundamental mismatch between the data available at training and

validation time: since this approach is trained on entire paths it is unlikely to make

the correct decision when no options appear to be correct. For instance, a direction

like “go to the elevators” is unlikely to result in the correct partial path when the

elevators have not been detected, since the algorithm has never been trained on

what to do when landmarks are not visible. Our approach does reason about this

possibility because it has been trained to do so, and chooses the action that best

matches the direction using the information available. Furthermore, our results show

that while access to a fully-labeled map does sometimes improve the performance of

our approach, the difference in our work is not significant.

Another formulation of natural language understanding is introduced by Howard

et al. [60] as inferring planning constraints. This approach uses a novel graphical

model (the Distributed Correspondence Graph) to map from language to a set of

constraints that obey the instruction. A trajectory optimizer uses these constraints

to compute the final path. We will make use of this graphical model in later chapters

of this work and our policy will be used as their trajectory optimizer.

18

2. Background

Summary and Comparison

Following directions in completely known environments is different than its unknown

environment counterpart, in part because the approach can reason over the entire

path and is able to use global information about the world and the direction. For

example, knowing the direction ends near an uncommon landmark in the environment

constrains the search to paths that end near that location. Additionally, being able

to do an exhaustive search in the environment ensures no alternative is missed (which

can occur in partially-known environments). This provides a level of robustness, and

on the whole these approaches are able to handle complex unstructured environments

quite well. However, collecting a complete annotated semantic map is time consuming

and may be impossible in some scenarios such as disaster response.

Keeping this important limitation in mind, we do gain several important insights

from this class of approaches that will become useful in our problem of following

directions through unstructured unknown environments:

• we will represent the world using a combined metric, topological, and semantic

map,

• our policy will learn the meaning of action words directly without an intermediate

representation, and

• we will utilize a feature-based representation of the world in order to generalize

to new scenarios.

We will represent the world known so far using a partial map, and since we cannot

optimize complete paths we will use this partial map to enumerate actions that

represent potential paths towards the destination. Given these candidate actions, a

policy will predict a sequence of decisions that move the robot in the world, following

the direction. To do this, the policy will evaluate all actions (using features extracted

from each path) and selects the one that best matches the direction under the map

known so far. This process will be repeated until the policy decides it has reached

the destination.

19

2. Background

2.1.2 Following Directions through Unknown Environments

The approaches presented so far treat direction following as inferring a complete path

through an environment and thus require access to a complete semantically annotated

map of the environment. This assumption is not always realistic or practical, as

collecting a full map may be expensive, time consuming, or simply impossible in many

domains. Enabling robots to understand natural language in unknown environments

would allow them to operate in many more situations.

We now present approaches that have investigated this problem of direction

following through unknown environments. Because they cannot reason globally, these

solutions make a sequence of decisions, using only partial map information that

has been collected so far. To date, all approaches in this category share a common

theme: they map language to a formal intermediate representation of the intent of

the direction, then execute it on the robot open-loop. There are two ways of mapping

from language to this intermediate representation: using engineered rules or a learned

parser. As we will see, these approaches are able to successfully follow directions

through previously unknown environments. However, because of the assumptions

made in the formal intermediate representation, so far these solutions have only been

applied in highly structured environments.

Engineered Approaches

The first class of approaches map language to a sequence of hand-generated parame-

terized action primitives such as travel() or move forward until(). Representing

the natural language direction using these primitives does not require access to a

complete map.

MARCO is a system that follows free-form natural language directions through an

unknown virtual environment [91, 92, 93]. This approach uses a hand-coded parser to

sequence parameterized action primitives (called procedural specifications) from the

natural language direction. These local procedures consist of several action primitives,

such as moving, turning, verifying the presence of an object, and declaring the goal

has been reached. These procedures also include pre- and post-conditions that specify

what the instruction follower (the robot) expects to see before and after the travel

procedure. This can be used to infer implicit actions that must be performed in

20

2. Background

addition to the explicit commands. This work was an impressive implementation of

an end-to-end simulated system that could handle a wide range of natural language

commands, but it operated entirely in a highly-structured game-like environment.

This environment consisted of regular grid-aligned hallways and intersections, along

with a limited set of highly-discriminative landmarks. These types of highly-structured

environments are very different from the real world indoor and outdoor environments

in which robots will be expected to understand natural language.

Using a very similar approach, the Instruction Based Learning project collected a

corpus of directions for a small robot operating in a miniature model of an urban

environment [24, 81, 85]. Using pre-programmed primitives, the authors mapped

language onto sensory-motor behaviors, such as moving towards an intersection or

turning at a given location. Because their action primitive set is closed, the authors

note this can lead to robustness problems. This approach also does not reason about

uncertainty and cannot backtrack if it makes a mistake. This body of work provided

a corpus of directions and developed basic action primitives to sequence together.

However, the environment was a simple city-like simulation and the robot primarily

used road intersections to navigate. Our approach operates in a variety of indoor and

outdoor environments and can use arbitrary landmarks.

While these systems were successful in following directions through unknown

environments, they operates solely in structured environments with a small set of

possible actions or landmarks. Furthermore, they rely extensively on a collection

of hand-tuned rules and engineered components instead of learning the meaning of

commands directly. Our approach aims to operate in more unstructured environments

that do not have clear regular structure, which precludes the use of hand-programmed

robot behaviors.

Learned Approaches

Instead of using hand-generated rules for parsing language, several approaches instead

learn the mapping from natural language to robot controllers. A key benefit of

learning a parser is the ability to handle more complex commands with varied input

language.

For example, approaches presented by Matuszek et al. [99] train a language parser

21

2. Background

that can be used to follow natural language directions through both known [98] and

unknown [99] environments. This parser can map language into formal procedural

plans expressed in a LISP-like formal specification called Robot Control Language

(RCL). These procedures are then executed by the robot in the environment. How-

ever, these particular approaches only take into account the topology of a building

(hallways, rooms, and intersections), without using any landmarks for navigation [99].

Our approach reasons both about the structure of the environment (topology) and

landmarks within it (semantics).

Similarly, Chen and Mooney [29] extended upon the work of MacMahon [92] to

learn a semantic parser and a lexicon for representing directions in a formal navigation

plan language, using training data consisting of example directions and paths. Even

though this approach can handle a wider range of commands, it is still restricted to

use the same local procedures. In this approach, following the directions will fail if the

environment does not match what the action primitive expects. This approach was

validated on the same simulated (highly structured game-like) world developed by

MacMahon [92], imposing the same requirements on the structure of the environment.

Summary and Comparison

These presented approaches to the problem of following directions do not assume

access to a complete map of the environment. They engineer or learn a mapping

from the natural language instruction to a sequence of action primitives, and are then

executed by the agent in the environment open-loop. The intermediate representations

range from parameterized action primitives to formal LISP-like statements, and they

represent a formal description of the instruction in the form of a robot-executable

controller.

Having an intermediate representation of the intent does enable this class of

approach to handle some complex language commands (e.g., “take the second left,”

“go until you reach an intersection”). However, mapping language to robot controllers

leads to a key assumption for this class of solutions that the robot will be able to

execute the desired controller perfectly and the environment will match what the

controller expects. The formal symbolic representation of the command in these

approaches is rigid and can lead to brittleness, for example when there is a large

22

2. Background

mismatch between the environment and controller expectations.

As a result, these existing approaches all make simplifying assumptions about the

structure of the environment, from assuming highly-regular simulated environments

to modeling indoor environments as a topological graph without any landmarks.

Furthermore, all of these approaches have been validated in simulation only, or by

making strong assumptions on the structure of the environment. It is unlikely that a

real robot exploring the environment would generate a partial semantic map that is

structured like the environments these approaches currently operate in. Indeed, maps

generated by robots during execution in unstructured environments are generally

noisy: hallways are not exactly straight, intersections are not always right angles, etc.

This restricts the complexity of the environments that can be handled by this class

of solutions.

The environment limitations required by the above prior approaches mean that

they have only been applied to structured unknown environments. Keeping these

limitations in mind, we do gain two important insights that will be useful in our

problem of direction following through unstructured unknown environments:

• our policy must make a sequence of decision using local information only, and

• our policy must explicitly reason about when it has finished following the

direction (stopping).

We remove the reliance on action primitives or intermediate formal representation of

the language; in our approach we instead train a policy that reasons directly about

the meaning of words. This representation is more flexible, and as we will show can

handle unstructured unknown environments.

2.1.3 Other Related Language Understanding Problems

We now review some of the relevant literature on enabling robots to understand

natural language in settings other than direction following. For example, some of

the interesting application areas are dialogue systems, understanding general (non-

navigation) instructions, and language-driven human-robot interaction or semantic

mapping.

23

2. Background

Dialogue and Language Generation

Dialogue between people and physically-situated systems (such as robots) poses special

challenges, such as engagement (when to start or stop a conversation) and turn-taking

(when to speak during a conversation) [19, 25]. Several approaches attempt to solve

the inverse of our problem: that of generating a natural language description for

a path, task, situation, or help request. Solutions to this problem include a game-

theoretic approach that model the rationality of the speaker and listener [53], formal

logic specifications of plans [120], inversions of an existing probabilistic graphical

model [160], information-theoretic human-robot dialogue modeling to generate queries

that would reduce the entropy in the groundings [38, 159], inverse reinforcement

learning from human demonstrations [113], and Monte-Carlo simulations of a direction-

follower to maximize the likelihood they reach the destination [52]. These approaches

all map from a desired action (for example a specific action to be performed by an

operator) to a natural language description of the task, with the idea that a person

could then execute the desired task.

Understanding General Instructions

One of the earliest approaches for understanding natural language instructions was

presented by Winograd [170], where a dialogue-driven interface could be used to

manipulate objects in a simulator.

Agre and Chapman [3] introduce the notion of “plans-as-communication,” where

a set of natural language directions serve as “guides to activity” and exploit shared

understandings of the world. The directions provide a skeleton of a plan that requires

improvisation, instead of a complete solution to the problem [3, 27].

More recent work has focused on understanding general instructions for every-

day manipulation tasks by mapping high-level instructions in natural language to

a sequence of robot primitives similar to the ones present in the direction following

literature. This has been applied to tasks ranging from setting a table [161], com-

pleting mobile manipulation tasks in the kitchen [102], or following a Microsoft Help

instructions [21, 22].

Other related work has investigated teaching tasks using natural language. Work

in this area generally uses language to sequence together smaller subtask components

24

2. Background

the robot may already know. Approaches to this problem include interactively

defining new tasks using keywords and basic primitives [100], learning formal pre-

and post-conditions for new tasks described in natural language [26, 43], combining

dialogue with observations of human behavior to teach new tasks to a robot [137],

or using dialogue to add, modify, or cancel tasks by interacting directly with an

autonomous robot [154].

The ability to teach arbitrary tasks to robots using a combination of natural

language, gestures, demonstrations, and other sources of prior knowledge (for example

the web) will one day enable robots to become effective teammates in human-robot

teams.

Language-Driven Human-Robot Interaction

Language has been used as one component of a multi-modal interface for controlling

robots. Speech is an especially motivating interaction modality as it requires essentially

no user training, and could be used for very short-term interaction between robots and

people. These systems range from robots that can interact with passersby in crowded

environments in order to reach an unknown destination, to single-user interaction in

controlled settings.

GRACE was an early integrated fielded system that successfully navigated to a

registration desk in a previously unknown environment by asking people for help

and following simple directions [145]. However, the natural language interaction was

primarily restricted to pointing gestures and very simple commands, resulting in

interaction closer to “verbal tele-operation.” The robot was also missing the ability

to recognize semantic entities in the environment, such as rooms and landmarks. Our

work is able to handle more complex language and reason explicitly about landmarks

and regions in the environment as the robot detects them.

Similarly, the Autonomous City Explorer robot is able to navigate in unknown

environments to reach a destination by interacting with pedestrians [15]. This system

represents the world as a partial metric and topological environment, and periodically

asks for help to reach the destination. The human-robot interaction is limited to

simple gestures and a touch screen, both indicating the heading to travel in next (for

example, by pointing towards where the robot should go). While the robot asks for

25

2. Background

help using scripted natural language requests, it does not attempt to understand or

follow complex natural language instructions to reach the destination.

Because of the complexity of speech recognition in noisy environments, the

language interaction component in these approaches has generally been limited or

uni-directional from the robot to people. Despite these limitations, how people give

instructions has been studied in many settings, including robot navigation in the

TeamTalk corpus [96, 97]. Studies such as these could one day be used for building

human-robot dialogue systems.

One such dialogue system was presented by Skubic et al. [146], who developed

a multi-modal human-robot control interface that could use speech as one possible

input during interaction between a robot and operator. In this work, language

was used to command basic actions, provide landmark names (replacing object

recognition), and describe spatial relationships to objects. The system could also

generate spatial descriptions to describe the location of objects, and perform simple

dialogue interactions to learn more about the environment.

While these approaches to human-robot interaction may have only considered very

simple language commands, they illustrate the usefulness of complete implemented

system and highlight many of the challenges involved with such a complex endeavor.

Furthermore, they demonstrate that people are by-and-large willing to interact with

complex robots using speech.

2.1.4 Comparison of Problem Space Features

To better compare the problems solved by prior approaches, we list in Table 2.1 the

major relevant prior works in understanding natural language for navigation, and

highlight the characteristics of the problem these approaches are solving according to

two important dimensions. First, the starting map may be known or unknown when

the robot receives a direction to follow. While assuming an a priori map is reasonable

for many applications, in many cases it is impractical or infeasible to assume that a

completely-labeled map will be available ahead of time. Furthermore, being able to

operate in unknown environments is desirable as it removes any limitation about the

environments the approach can operate in.

Second, the constraints placed on the environment structure by each approach

26

2. Background

Table 2.1: Comparison of domain space features for prior work in natural
language direction following. Starting Map refers to whether or not the map is
known to the robot when it receives a direction to follow. Environment Structure
refers to any constraints imposed on the structure of the environment (e.g., the
approach cannot use landmarks), therefore limiting the types of environments
(or commands) each approach can handle. Our approach is the only one that
addresses the problem of following directions through unstructured (i.e. real
world) environments without an a priori map of the world.

Problem Characteristics

Approach Starting Map Environment Structure

Levit and Roy [86] Known Open map with landmarks

MAP-TASK [8, 167] Known Open map with landmarks

Shimizu and Haas [138] Known No landmarks

Kollar, Tellex et al. [73, 158] Known∗ Unstructured

Howard et al. [60] Known Unstructured

Kress-Gazit et al. [77] Known Constrained, no landmarks

IBL [24, 81] Unknown Road intersections only

MARCO [93] Unknown Virtual structured†

Chen and Mooney [29] Unknown Virtual structured†

Matuszek et al. [99] Unknown No landmarks

Our approach Unknown Unstructured indoor/outdoor
∗ Some preliminary results are presented using only local map information built up online.
† These approaches use a game-like simulated environment consisting of grid-aligned

intersections and a small set of highly-discriminative landmarks.

27

2. Background

also limit the environments that each approach can deal with. For example, some of

the approaches only operate in virtual environments with highly regular structure.

Other approaches do not reason about landmarks, so would require directions that

describe the environment topology only. These constraints further limit the types of

environments.

This thesis is the first to address the problem of following directions in unstructured

unknown environments.

2.1.5 Summary

Given that language holds the promise of effortless human-robot interaction, it is

not surprising that many researchers have focused on utilizing natural language as a

medium for interacting with robots or other intelligent agents. In the broad category

of understanding natural language directions for robots, the problems addressed so far

by the prior literature are following directions in known unstructured environments,

and following directions in unknown structured environments. We have shown the

limitations of both of these: requiring a complete map of the environment be available

is not always feasible, and imposing that the environment obey some structure can

be a severe limitation. Ours is the first approach to tackle the problem of following

directions in unknown unstructured environments.

We gained several important insights from the works, namely, a world representa-

tion, a need to learn the meaning of words directly (free from intermediate formal

controllers), and a general framework for understanding directions (sequential decision

making). We will use these in our approach described in Chapter 3. Before that, we

will continue reviewing related work in other areas that our approach will draw from.

2.2 Imitation Learning

Machine Learning is playing an increasingly important role as robotic systems become

more complex. Within this large body of work, techniques that utilize imitation

learning (also known as learning from demonstration) are of particular interest,

as they benefit from the presence of an expert who can provide examples of the

optimal (or desired) behavior [9]. For example, imitation learning has been used

28

2. Background

to develop a steering control for an autonomous driving vehicle [10, 117], develop

helicopter controllers [2, 31, 32], and learn collaborative multi-robot behaviors [30]

or task allocation utility functions [40]. In all of these approaches, a person (the

expert) provided demonstrations of the desired behavior, and the algorithm used the

demonstrations to deduce a way to replicate the same behavior.

One way to learn from human demonstrations is by Inverse Optimal Control [6,

20, 66]. In this setting, the goal is to learn a cost function from user demonstrations,

such that the demonstrations are optimal under the learned cost function (learning a

reward function is an equivalent formulation). In other words, an optimal plan under

this cost function should mimic the expert’s behavior. The planner can then use this

cost function to produce a behavior on new problems. This approach assumes the

expert was acting (near) optimally when making decisions, such that the cost function

encapsulates the expert’s decision making. This formulation is especially useful in

settings where an explicit cost function is unknown (or difficult to obtain), and

hand-tuning it would be a time-consuming process requiring many iterations of “guess

and check.” Instead, an expert can demonstrate examples of desired behavior, and

the algorithm can use these to learn the cost function. This approach to learning cost

functions has successfully been used to learn different driving styles [1], cost functions

for arbitrary MDPs [108], route preferences through a city [174], and pedestrian

prediction inside buildings [124].

Another way to formulate imitation learning is to reduce it to a problem of

structured prediction [156], which is especially well suited for problems where a robot

is making a sequence of decisions. In this setting, a structured classifier attempts to

predict the expert’s action (out of all possible actions). One such approach to imita-

tion learning is Maximum Margin Planning (MMP), presented by Ratliff et al. [121].

It attempts to mimic the expert’s behavior and learn a cost function by penalizing dis-

agreements between the expert’s demonstrated action and the lowest loss-augmented

cost action [121, 122, 123]. This structured prediction formulation has been applied to

a variety of problems, including improving overhead imagery interpretation for robot

cost maps [123, 139], correctly interpreting perception data for safe navigation over

complex terrain [140, 141], and learning driving maneuvers [142]. As an additional

benefit, this formulation has an efficient online optimization formulation using the

subgradient method and standard convex optimization techniques [121].

29

2. Background

While Max Margin Planning and other imitation learning approaches have success-

fully been applied to many real world problems, recent work by Ross and Bagnell [126]

showed that this supervised approach to imitation learning can perform poorly when

the training and testing data are not independent and identically distributed. In such

settings, the learned policy induces a distribution of visited states that is different

than the distribution of states visited by the expert demonstrations. If the learned

policy makes a mistake, it will be forced to make a decision from a state it never

visited during training, and the errors will compound. To address this issue, Ross

et al. [129] reduced imitation learning to no-regret online learning, and presented an

iterative imitation learning framework that alternates between training and execution

(similar to work on search-based structured prediction by Daumé et al. [35]). This

enables the algorithm to collect demonstrations for states that are induced by the

policy during learning, and results in a policy with performance guarantees over the

state distribution it induces [129]. This provided notable performance gains on such

diverse problems as autonomous driving, playing Super Mario, handwriting recogni-

tion, helicopter control, and image classification [126, 129, 130, 131]. The authors also

applied similar ideas to system identification [127], contextual list optimization [132],

and cost-sensitive learning problems [128].

2.3 Belief Space Reasoning

Significant uncertainty in a robot’s state that is not accounted for when making

decisions can result in poor performance. For example, a mobile robot may not be

certain about its position, and may run into a wall if it attempts to travel to the

goal directly. Instead, the robot can account for the uncertainty in its position by

reasoning in belief space, resulting in paths that minimize the uncertainty and the

time required to reach the destination. While this problem can be formulated as

a Partially Observable Markov Decision Process (POMDP), solving POMDPs still

remains an intractable problem for most realistic scenarios [63, 88].

In order to plan mobile robot trajectories that minimize the likelihood of becoming

lost, Roy et al. [133] developed a model for a map’s information content, and then

used this model to plan trajectories that take into account the future positional

uncertainty. Since completely representing a robot’s belief and reasoning about every

30

2. Background

possible future measurement is computationally intractable, the authors use the

simplifying assumptions that the robot’s belief can be accurately represented by a

Gaussian, and compute the expected localization entropy using only the maximum

likelihood sensor measurement. They then compute the environment’s information

content by combining this expected position entropy with a probabilistic model of

dynamic environments (to account for corrupted measurements). This approach

then plans trajectories in this information space using a simple graph-based planner,

yielding “coastal” paths that navigate to a goal by staying close to walls (a good

source of localization information). The resulting paths are slightly longer but

reduce the robot’s average localization entropy while traveling to the destination.

Extending upon that idea, Prentice and Roy [118] applied a belief representation

for a probabilistic roadmap planner, creating belief roadmaps that are used to plan

informative paths very efficiently. These resulting paths follow similar “coastal”

patterns to stay localized.

Beliefs are often represented as a Gaussian. For example, Platt et al. [114] assumes

future observations are also normally distributed about the maximum likelihood belief.

It then applies conventional optimal control strategies to plan directly in belief space.

Similarly, van den Berg et al. [163] represent beliefs by a Gaussian distribution

(without assuming maximum likelihood observations) and plans trajectories in belief

space for robots equipped with noisy sensors.

For non-Gaussian beliefs, Platt et al. [115] demonstrate an approach for represent-

ing samples from the belief space that represent belief hypotheses [115, 116]. This

approach generates plans that have a wide margin between the current best hypothe-

sis and all other samples, resulting in actions that are likely to confirm or disprove

the current best belief. Various researchers have applied belief space reasoning to

understanding the actions of an agent. One approach is to treat action understanding

as inverse planning, which provides a computation model for understanding the

actions of people [12]. For example, Baker et al. [13] model the desired and beliefs

of an agent, and invert a POMDP to infer the best explanation for the observed

behavior [11, 13]. Another approach based on the Most Probable Explanation (MPE)

assumption is presented by Verma and Rao [165], who formulate the belief space

planning problem as a graphical model, where the most likely graphical model is used

as an approximation to the maximum a posteriori solution. Using this assumption,

31

2. Background

the authors formulate planning as the solution to a greedy policy, and show they can

learn a policy that infers a goal using partial traces of demonstrations.

Another approach to understanding the actions of an agent is to represent the

agent’s belief directly and use this belief to generate plans; de Chambrier and

Billard [36] learn human search policies from demonstrations in a partially-observable

context. This approach represents the person’s belief as samples in a particle filter,

and reproduces the learned search policy on a robot manipulator to search for a block

on a table.

Another method for dealing with uncertainty is to assume that it will be resolved

after the next iteration. In this setting, the central idea is to plan by using the

expectation over the minimum cost plans, as opposed to the minimum over expected-

cost plans. Essentially, this is simplifying the problem by reasoning about the

uncertainty for one step into the future, and using minimum cost plans (with no

uncertainty) thereafter. QMDP [88] and Hindsight Optimization [172] are two

frameworks that utilize this to reason about the uncertainty for a single step.

One successful application of hindsight optimization for robot planning is presented

by Kiesel et al. [70], who apply this technique to open world planning problems (where

the agent does not initially have complete knowledge about the world state), and

demonstrate an efficient solution in a simulated search-and-rescue problem [70] as

well as robot planning under temporal uncertainty [69].

When following natural directions in unknown environments, we have several

sources of uncertainty: uncertainty about the map, uncertainty about how far

the policy is in the direction, and uncertainty in the location of the destination.

Uncertainty in the map is the main source of uncertainty we will address, either

implicitly (by training a policy to reason about the uncertainty) or explicitly (by

representing a distribution over the map). Our approach will make use of the ideas

behind Hindsight Optimization to present an efficient solution to the problem of

reasoning under uncertainty. Furthermore, we will learn how people reason about the

uncertainty in the environment by observing their behavior in a map distribution.

32

2. Background

2.4 Active Exploration

Active exploration for simultaneous localization and mapping (SLAM) involves ex-

ploration of the unknown parts of the environment while minimizing uncertainty

during exploration. This area of research is related to ours in that we begin with an

unknown environment and must trade off the cost of gathering information about

unknown parts of the world with the cost of executing actions using this knowledge.

However, instead of trying to reduce uncertainty in the map or the robot’s pose, we

are instead trying to correctly follow directions. Our goal is constrained by the task

and we may not know for certain when we reach it (as we may never gather a full

map). In contrast, SLAM has a very clearly defined goal of gathering a complete

map of the environment with no missing pieces. We want to gather just enough

information to be reasonably confident that the directions were followed correctly,

while minimizing the total distance traveled.

For robot localization, Fox et al. [49] introduced Active Markov Localization for

Mobile Robots, where the robot actively localizes in a known map by controlling where

to move and where to look. This approach computes the information gain (reduction

in entropy) of taking any given action, and includes an explicit (hand-tuned) trade-off

between the cost of the action and the expected information gain.

In a SLAM setting, similar work by Stachniss et al. [151] attempts to build high

quality maps by promoting behaviors like loop closing [150], or using estimates of

information gain to trade off the utility of each action by taking into account the

expected sensor information gained by the action [151].

Other prior work has studied actively selecting viewpoints [94], trajectories [143],

or control policies [71] that minimize errors. Runge et al. [135] use the Expected

Value of Information to identify uncertainty that is relevant to an adaptive wildlife

management setting.

2.5 Semantic Mapping

Semantic mapping is concerned with enabling robots to build human-centric models

of their environment so that they can reason about high-level properties of the

environment when interacting with people [80, 109, 119, 173]. Having such rich map

33

2. Background

representations would enable robots to perform tasks that require reasoning about

semantically meaningful components of the map, instead of simple metric navigation

tasks. Indeed, understanding natural language directions requires a semantic model

of the environment so that a robot can reason successfully about the direction (e.g.,

reasoning about landmarks). For example, the command “go to the kitchen” requires

some knowledge of where the kitchen is (or what a kitchen looks like). The two main

classes of approaches to building semantic maps are fully autonomous approaches,

and approaches driven by human-robot interaction.

Fully-autonomous approaches to building semantic maps do not require human

input to generate a map. Prior work has enabled robot to generate topological maps

from range data [23], use LIDAR to semantically classify regions in buildings [50,

104, 152], and use 3D point cloud data to semantically label objects [4, 82]. These

approaches can be used to generate maps with semantically meaningful properties,

such as the locations of corridors, offices, and meeting rooms. Additionally, labeling

the location of objects (e.g., computers, chairs, mugs, etc.) in the world can enable

robots to reason about these directly (e.g., “bring me the mug”) or indirectly (e.g.,

deduce the location of the office from computers, desks, and chairs). Our work will

enable robots to reason within these semantically annotated maps.

Semantic mapping approaches that are driven by interaction with a human operator

have the potential to enable robots to build more human-centered representations of

their environment, and gather information that would otherwise be hard to deduce

autonomously. For instance, recent semantic mapping approaches use a multi-modal

interface (including natural language) to build a map of the environment [14, 51, 75,

119]. In these approaches, a user can describe (in natural language) the room the

robot is in, or gesture to an object and describe it.

One instance of a user-driven approach to building semantic maps is the Semantic

Graph, a framework introduced by Hemachandra et al. [56] as a coupled metric,

topological, and semantic map of the environment containing semantically labeled

locations described (in natural language) by an operator [56, 168]. This approach

extends a standard SLAM metric map with a topological representation of the

environment and semantic properties of each region. The semantic properties for

detected region labels are inferred using image- and laser-based scene classification,

as well as natural language descriptions. During a guided tour to the robot, the user

34

2. Background

can provide natural language description of the environment the robot is currently

in (e.g., “this is the gym”) or parts of the environment the robot does not directly

observe (e.g., “the gym is down the hall”). Similarly, Williams et al. [169] use a

cognitive architecture to add unvisited locations (described by the user) to a partial

map, but only reason about topological relationships to unknown places.

Our work makes use of recent semantic mapping research in two important ways.

First, our approach to modeling partially-known environments in Chapter 3 will

require access to a semantic mapping component that can reason about metric,

topological, and semantic properties of the environment the robot has observed so

far. Second, our work on inferring semantic maps from a natural language direction

in Chapter 5 will make use of the Semantic Graph [56], but we add the ability to

hypothesize new locations in the environment using the information contained in the

natural language command. This effectively treats language as another sensor that

can be used to build a map.

2.6 Summary of Background

Enabling robots to understand natural language directions would be one step towards

enabling seamless human-robot interaction. Because of this potential, it is not

surprising this interdisciplinary problem has received much attention. The primary

difference between the approaches to natural language direction following presented

here is whether or not a complete semantic map of the environment is available.

Approaches that use a complete map can infer paths using global information from

the complete direction and the entire map. Approaches that do not have access to a

full map a priori must instead make decisions using only the information about the

environment that has been observed. Several previous approaches to this problem

operate in constrained structured environments to simplify the problem (for example

in simulation or environments without landmarks). In contrast, our approach operates

in unstructured environments by learning a policy that can follow directions through

unknown environments. In this chapter, we have argued that the problem of following

natural language directions through unknown and unstructured environments has

not received enough attention.

To tackle this problem, we will leverage major insights gleaned from the prior work.

35

2. Background

We will treat following directions as a problem of making a sequence of decisions

under uncertainty. This will make use of a policy that predicts an action, and we will

train the policy by drawing upon several state of the art imitation learning techniques.

This work is related to active exploration in many ways since we start with no map

of the world, although in our problem the primary goal is following the direction

correctly (not building a map).

We will also treat language as a sensor to generate a distribution of possible maps

that extend beyond the robot’s sensor range. This makes use of a semantic mapping

framework, adding language as a possible input. Since the policy must now reason

about a distribution of landmarks, we will additionally bring in work in belief space

reasoning. Together, our work will enable robots to follow natural language directions

through unstructured unknown environments.

36

Chapter 3

Following Directions in Unknown

Environments

I never saw a discontented tree.

John Muir

In Chapter 1, we discussed how our particular problem of natural language direc-

tion following in unknown environments is one of decision making under uncertainty,

where a policy makes a sequence of decisions using only the information (map) it has

available. This policy should choose actions to explore the environment (building

up the robot’s knowledge of the world), backtrack if the robot made a mistake, and

explicitly declare when the robot has reached the destination.

In the prior work presented in Chapter 2, we analyzed various approaches to

similar problems, and gleaned several important lessons. Among these, we gain a way

of representing the world (using a combined metric, topological, and semantic map),

a general approach of learning the meaning of actions directly (free from intermediate

formal controllers), and a representation of actions in the world that uses features.

Additionally, we know that our policy must have several properties: it should reason

about partial information and make decisions under uncertainty (e.g., even in the

absence of landmarks), it should recover from mistakes it makes during execution,

and it should make a sequence of decisions until it explicitly declares that the robot

has reached the destination.

37

3. Following Directions in Unknown Environments

In this chapter, we further detail our approach, specifically implementing a system

that enables robots to follow natural language directions through unstructured and

unknown environments. At the heart of the policy lies the equation we introduced in

Section 1.2:

π = argmin
actionst

cost (position, action | language,mapt) . (3.1)

Looking more closely at the components of this equation, we identify the key steps

required to formalize the policy. First, we need to model the information contained in

the natural language command given by the user (the language). Second, the robot

needs to build up a partial model of the environment, using a combined semantic-

topological-metric representation (the map). Third, the policy needs to enumerate

the set of actions available at any time, so that they can be evaluated under the cost

function (the action set). Finally, given an action, command, and partial world, the

policy must evaluate the cost of that particular action. The policy will do this using

a feature representation of the action. We will describe each of these in this chapter,

as well as the entire algorithm for direction following in unknown environments. We

leave until Chapter 4 a discussion of how the policy is learned, and for now assume

that the cost function is given.

For conciseness, Table 3.1 defines the following symbols to help represent the

policy formulation more succinctly. We can now rewrite Equation (3.1) as:

π (x) = argmin
a∈At

c (x, a |Λ, St) . (3.2)

Table 3.1: Symbols used in policy formulation.

t current time

x current position

Λ natural language command

St current partial map at time t

At set of possible actions available, given the map St

a a single action

c the cost function

38

3. Following Directions in Unknown Environments

For notational convenience, we introduce a state variable s that encapsulates the

current pose, the map, and the language command:

s := {t, x, St,Λ}. (3.3)

This enables us to further simplify the policy representation as a cost function

evaluated over state-action pairs:

π (s) = argmin
a∈At

c (s, a) . (3.4)

In this setting, the policy enumerates a set of actions At available from the current

state, and chooses a single action to execute on the robot. More concretely, each

individual action will either take the robot to a new place in the environment (exploring

new parts of the map), backtrack to a previously visited location (if the robot made a

mistake), or explicitly declare that the robot has finished following the direction. The

policy in Equation (3.4) considers the cost of each possible action, and selects the one

with the lowest cost. The goal is for the robot to choose the right set of actions At

and the correct cost function. In this dissertation we assume that the cost function

takes the form of a linear combination over features φ of the state-action pair:

c (s, a) := wTφ (s, a) (3.5)

While many other cost functions are possible, a linear cost function is efficient to

compute and learn.

The remainder of this chapter describes our technical approach to enabling robots

to follow natural language directions through unknown environments. We first

describe our model for the language command Λ, which is split into a sequence of

semantic clauses (Section 3.1). We then model the partially-known environments

with a semantic map St that is built up online (Section 3.2). In addition to the metric

and topological structure of the environment, this map contains semantic information

of places and objects. We then describe in Section 3.3 the detailed representation

of the policy, including the state and action spaces, and the complete algorithm for

following directions in unstructured unknown environments. Finally, we describe the

features used in the policy’s cost function in Section 3.4.

39

3. Following Directions in Unknown Environments

3.1 Modeling Spatial Language

Natural language is used extensively when people collaborate, and would provide

a similarly natural and flexible way of interacting with autonomous robots. Such

interaction would not require specialized interfaces, extensive user training, or knowl-

edge of robotics. However, several factors make following natural language directions

challenging for robots. First among these, language that is only constrained by the

task may engender a large vocabulary of words that users may choose from [157].

In other words, there are many ways of expressing directions that map to the same

action, and users may direct robots towards the same intended destination with

very different commands. Additionally, untrained users may have different spatial

representations of the world [72]. These challenges are due to the complexity of

natural language communication; enabling robots to understand language will require

dealing with this complexity.

Fortunately, most spatial language directions exhibit properties that we can

leverage to simplify this challenging problem. This linguistic structure was described

as a cognitive concept by Jackendoff [62] and colleagues [83, 155], and was later

formalized as a computational concept by Tellex [157] and Kollar [72] in the form of

Spatial Description Clauses (SDCs). SDCs have been successfully used in many prior

approaches of robot natural language understanding, particularly following directions

and robot manipulation [41, 61, 72, 73, 74, 144, 158].

In this work, we will primarily make use of the following two key properties of

natural language direction. First, natural language directions are sequential : each

clause in a direction refers to one step along the path, ordered from the start to the

destination [72]. This enables us to decompose one long direction into several shorter

clauses. Second, each clause has structure: parts of the direction refer to different

meaningful terms; verbs prescribe what to do and where to go, spatial relations

describe the relative geometry between the path and the landmark, and landmark

references describe what objects will be visible from the path during navigation [73].

This enable us to reason about semantically meaningful components of language,

instead of attempting to learn a model for all natural language sentences. For example,

we will be able to learn models for individual verbs (such as “turn right”) that are

independent of the landmark. These two properties of spatial language directions

40

3. Following Directions in Unknown Environments

Table 3.2: Sequence of SDCs for the sentence “Turn
right towards the elevator and go through the doors.”
The command is decomposed into two SDCs (Λ0 and
Λ1), each with semantically meaningful components.

Verb Landmark Spatial Relation

Λ0 turn right the elevators towards

Λ1 go the doors through

are encapsulated in a representation known as Spatial Description Clauses (SDCs),

introduced by Tellex [157].

Described more formally, the SDC representation enables us to represent a complex

natural language direction Λ as a sequence of Spatial Description Clauses:

Λ→ [Λ0, . . . ,ΛN] , (3.6)

where each clause contains some structure. This enables us to simplify the problem

of following a complete direction into several sub-problems, each following a single

clause in the direction. Moreover, each SDC Λi consists of several components:

• Verb: an action to take.

• Landmark: an object described in the command.

• Spatial Relation: a desired geometric relation between the landmark and the

path.

Any of these fields can be unlexicalized and therefore only specified implicitly. This

semantic structure provides a decomposition of language into components, each of

which will (as we will later show) be modeled separately. A single SDC models

the actions necessary to follow a short command, and a sequence of SDCs forms a

complete command.

Given a natural language direction (for example, the one shown in Table 3.2),

we first decompose the command into a sequence of two SDCs that the policy will

complete in order. Then, we extract the semantically meaningful components of

the language (verbs, landmarks, spatial relations) from each SDC. This formulation

provide a semantically meaningful representation of the intent of the natural language

41

3. Following Directions in Unknown Environments

direction, while remaining flexible to the many possible ways of expressing the same

thing (by extracting the key components in the command). Furthermore, it does not

rely on formal controllers that directly prescribe how the robot should act.

Although Spatial Description Clauses will enable us to understand natural language

directions by reasoning about its components, there are some directions where this

SDC formulation does not hold. In particular, some directions are best represented as a

hierarchy of SDCs, or may require reasoning about complex conditionals: for example

negation (do not go through the doors) or counting (the third door on the right).

Nonetheless, in spite of these limitations, this formulation enables tractable inference

for following directions, since we can treat the problem as a sequence of SDC-following

procedures. Given our assumptions about the sequential and decompositional nature

of natural language directions, this simple model is expressive enough to capture

much of the complex information contained in natural language.

3.2 Modeling Partially Known Environments

The previous section described our representation of the information contained in

the natural language command as a sequence of semantically structured clauses. We

now discuss the representation of world : a semantic map that evolves over time as

the robot travels in the environment. This semantic map St contains three main

components, outlined in Table 3.3: a metric layer, a topological layer, and a set

of semantically labeled objects. We make no assumptions about the structure of

the environment or how the robot builds up the map, only that it can represent

and update the metric, topological, and semantic map layers. This map provides a

human-centric model of the environment that is interpretable by both people and

robots, and the policy will use it to reason when following directions. We now describe

in more detail each component of the partial semantic map, using a running example

of a robot operating in the environment shown in Figure 3.1. In this hypothetical

explanatory scenario, the robot’s sensing range is limited, and the known information

at the start (Figure 3.1b) is a very small subset of the complete map.

42

3. Following Directions in Unknown Environments

Table 3.3: Components of the semantic map St at time t.

Xt metrical representation of the free and occupied space in the environment

Gt topological representation of how regions are connected

Ot a set of semantically labeled objects and regions

Start
S
ta

ir
s

E
le

va
to

r

Doors

(a) Complete map

Robot

(b) Starting
configuration

Figure 3.1: Illustrative scenario we use as a running example to describe our approach:
complete map of the environment (3.1a) and the resulting partial map for the starting
configuration (3.1b). Whereas we show all landmarks in the complete map, the robot
must make decisions using only the partial map information.

Metric Layer

The primary purpose of the metric layer Xt is to ensure the robot can navigate in the

environment without colliding with obstacles. We do not impose restrictions on how

this metric map is generated, only that it exists. For example, it can be generated

by a Simultaneous Localization and Mapping (SLAM) module running on the robot.

Similarly, we assume a motion planner exists that will be able to navigate the robot

to a chosen destination as long as a collision-free path exists. The details of the

planner are not important. For instance, in this dissertation we have applied our

approach on a variety of motion planners running on robots, including planners that

are sampling-based [67], graph-based [17, 18, 33, 164], and grid-based [46, 47, 153].

43

3. Following Directions in Unknown Environments

Start

Legend

Visited Vertex:

Frontier Vertex:

Graph Edge:

Robot path: Robot

Figure 3.2: The topological layer of the map stores where the robot has been and
where it could go. As the robot moves in the environment (), it builds up a
topological graph. This graph consists of places the robot has already been (), and
places the robot could go to gain information ().

Topological Layer

The topological representation of the world provides a way to reason over paths in

the environment. As the robot travels, it builds up a graph representation of the

places it has detected:

Gt = {Vt, Et}, (3.7)

where the vertices v ∈ V represent possible viewpoints that are connected by edges

e ∈ E representing allowable robot travel segments. Since this graph is generated

incrementally, the robot adds two types of nodes to this graph: nodes that represent

previously visited locations V , and nodes that represent frontiers F . Frontier nodes

lie between explored space and unexplored space, and are inspired by work on frontier-

based exploration [171] and other active exploration methods [94, 151]. Edges connect

any two nodes that have a feasible path between them. As the robot moves through

the environment towards unknown areas (i.e., towards frontier nodes), its sensors can

observe into the unexplored space. This “pushes forward” the boundary of knowledge,

and adds new nodes to the graph (both previously visited and frontier nodes). For

example, in Figure 3.2 the robot adds two frontier nodes to the graph Gt. The robots

removes frontier nodes once it reaches their location (they are now a visited node).

This topological representation is beneficial in two ways. First, the vertices

44

3. Following Directions in Unknown Environments

S
ta

ir
s

Figure 3.3: The semantic layer of the map is a set of semantically annotated objects.
When the robot’s perception detects an object in the environment such as the stairs
(), it adds it to the set of known objects Ot.

connected by feasible travel edges gives the robot the ability to generate and reason

about partial paths in the environment. Second, the frontier nodes are an explicit

representation of the information it does not yet have, and the policy will use this to

bias actions towards exploration. These will become core components of our approach

to following natural language directions in unknown environments.

Semantic Layer

The final component of the semantic map St is the set of all semantically annotated

objects Ot detected by the robot as it travels in the environment. The objects can

be physical things such as a water fountain or a door, landmarks such as a staircase

or an elevator, or a region in the world such as a kitchen or an intersection. Each

object o has a semantic label otag and some geometry (represented as a sequence of

points) opoints = [p0, . . . , pn]. An object can be used for navigation after it has been

detected. In other words, as the robot is following a direction the policy can only use

landmarks already in Ot to reason about. For example, in Figure 3.3 the map only

contains the stairs object (the elevator and doors are not yet known).

45

3. Following Directions in Unknown Environments

Summary

The semantic map St forms the robot’s world knowledge during execution. it consists

of the metric, topological, and semantic layers presented above, and can be written

as:

St = {Xt, Gt,Ot}. (3.8)

This semantic map is generated incrementally during robot execution, and will be used

throughout the rest of this work to reason about the possible actions, any objects in

the world, and how these relate to the command represented as a sequence of Spatial

Description Clauses. Note that we have made no assumptions as to the structure of

the world: as long as the robot is able to detect objects and represent valid paths in

the environment we can apply our approach for following natural language directions

in an unknown environment.

3.3 Policy Representation

With the above representations for the command and map, we detail the policy π

that maps from states to actions by minimizing the cost function over a set of possible

actions:

π (s) = argmin
a∈At

c (s, a) (3.9)

= argmin
a∈At

wTφ (s, a) . (3.10)

The state s consists of the current time t, position x, map St, and command Λ

(Equation (3.3)). In this section we describe how the policy’s state evolves as the

robot moves through the environment, and how to compute the set of actions At

given the current state. Our choice of action set is highly dependent on the semantic

map structure we have previously described. The set of actions encapsulates the three

desired types of behavior: exploration to new places, backtracking to somewhere the

robot has already been, and explicitly declaring when the policy has finished following

the direction. We also detail the entire algorithm for following directions in unknown

environments.

46

3. Following Directions in Unknown Environments

S
ta

ir
s

E
le

va
to

r

Doors

Start

Figure 3.4: The policy state updates as the robot travels through the environment.
Here we show the map update: the topological graph contains more nodes (both
visited and frontiers), and the set of semantically labeled objects now includes the
elevator and doors.

State

The state represents the information necessary and sufficient for the policy to make a

sequence of decision. This state evolves over time as the robot travels through the

previously unknowns parts of the environment. The components of the state are the

time, the robot’s position, the current map, and the input direction.

The state initialization is straightforward. Since the robot does not have an a

priori map of the environment we set its starting position at the origin (v0) and add

this vertex to the topological graph in the map (the map is empty otherwise). The

direction Λ is broken down into a sequence of SDCs [Λ0, . . . ,ΛN], as described in

Section 3.1.

During execution, the state updates to reflect the latest information available to

the robot. The time increments and the pose x updates to reflect the robot’s current

position. The three layers of the map also update in the following manner. The metric

map reflects the latest sensor information available to the robot. The topological

graph adds both visited and frontier graph nodes (to V and F respectively), as well

as connects valid travel segments between nodes by edges. After the robot completes

a travel segment (i.e. action), it adds a visited node at that position. The robot also

adds frontier nodes at locations known to be empty but that have not been visited, up

to some maximum distance. Lastly, as the robot detects objects with its perception

47

3. Following Directions in Unknown Environments

S
ta

ir
s

E
le

va
to

r

Doors

Start

Figure 3.5: Actions are places the robot can go next. Each action is a path in the
topological graph () paired with a landmark. For simplicity, we only show the
three actions that end at frontier nodes, and do not show the landmark associated
with each path in this figure. Additionally, the stop action (not shown) is always
available to the robot.

system, it adds them to the set of semantically labeled objects. This updated state,

illustrated in Figure 3.4, will be used to compute the set of valid actions.

Action

Given a state s, the policy must compute a set of actions At that represent all

allowable actions the robot can take at time t. Like the state, the action set evolves

over time, since the policy computes it using the semantic map St and the current

position x. Each action is a path from x to a vertex v ∈ Vt paired with an object

o ∈ Ot. The object may be undefined, to account for objects that are not yet visible

or SDCs that do not specify one. A separate action astop declares that the robot

has reached the SDC’s destination: the policy moves to the next SDC if one exists

(otherwise the robot has finished following the entire direction). Figure 3.5 shows

several feasible actions that end at frontier nodes in the topological graph for the

updated policy state.

Each action can either explore (if the path ends at a frontier node in F), backtrack

(if the path ends at a previously visited node in V), or stop (if the action is astop).

While the policy reasons about these types of actions when computing features of

various state-action pairs, we do not explicitly limit the set of available actions

48

3. Following Directions in Unknown Environments

(a) Path paired with the elevator. (b) Path paired with the doors.

(c) Path paired with the stairs. (d) Path paired with no landmark.

Figure 3.6: Since each action is a path paired with a landmark, the policy is searching
over the space of possible groundings for the command. Here we show four different
actions that use the same path: using previously detected landmarks (figs. 3.6a
to 3.6c) or no landmark (fig. 3.6d). This is a subset of the valid policy actions since
there are other paths in the environment.

or otherwise reason separately about the different classes of actions (exploration

vs. backtracking vs. stopping). The set of actions available to the policy is formally

represented as:

At = {path (x, v) ∈ Gt ∪ astop} × Ot, (3.11)

where path (x, v) is a valid path in the graph from x to a vertex v ∈ Vt. This set of

actions represents the possible groundings of the natural language command: the

objects o are possible groundings for the landmark field of the SDC, and the paths are

possible groundings for the action (i.e. the verb and spatial relation fields). As such,

each action a is one possible grounding for the Spatial Description Clause, and the

policy will search over these groundings. In other words, the action set will include

the same path paired with all known landmarks (see Figure 3.6).

Intuitively, an action represents one step along the direction’s full path. The

policy will make a sequence of decisions, choosing a single action to execute from the

49

3. Following Directions in Unknown Environments

Algorithm 1 Following natural language directions through unknown environments.

1: procedure Follow Dir(π,Λ)
2: t = 0
3: xt = v0

4: Xt = ∅ . No metric map
5: Gt = {V = {v0}, E = ∅} . Unknown environment
6: Ot = ∅ . No known objects
7: St ← {Xt, Gt,Ot}
8: Λ→ [Λ0, . . . ,ΛN] . Extract sequence of SDCs from Λ
9: cur sdc = 0 . Begin with the first SDC

10: repeat
11: t← t+ 1
12: . Update semantic map with sensor measurements zt
13: St ← perceive world(zt)
14: s← {t, x, St,Λcur sdc} . Update state
15: At = {path (x, v) ∈ Gt ∪ astop} × Ot . Compute the action set
16: a← π (s) . Choose a single action
17: xt ←Move(a)
18: if a == astop then
19: cur sdc← cur sdc + 1 . Move to next SDC
20: end if
21: until cur sdc > N
22: return
23: end procedure

(evolving) action set (see Figure 3.7). For example, if the robot were traveling down a

hallway, the action set would include a single frontier node further down the hallway.

When the robot reaches that node, another action would become available (traveling

a little bit further still). Additionally, since the action set still contains potential

actions in other areas of the environment (e.g., down a different hallway), the robot is

free to backtrack at any time and go into a different part of the environment. Lastly,

the policy must explicitly declare when the robot has finished following the direction

by calling the astop action. This action will complete the current SDC Λi, and move

to the next one (Λi+1) if it exists, or return.

50

3. Following Directions in Unknown Environments

S
ta

ir
s

E
le

va
to

r

Doors

Start

Figure 3.7: The policy chooses a single action to execute on the robot (). The
robot will then move to the endpoint of the action (in this case, towards the elevator).

Policy

The policy evaluates all actions a ∈ At available from a given state s, and chooses

the single action that minimizes the cost of the state-action pair in Equation (3.9).

We will defer a discussion on learning the cost function until Chapter 4.

The complete algorithm, described in Algorithm 1, shows the entire procedure for

following natural language directions through unknown environments. We initialize

the semantic map (Line 7) with an empty metric map, a topological graph containing

only the starting vertex v0, and no semantically labeled objects. We also extract a

sequence of Spatial Description Clauses from the command Λ (Line 8).

During execution, the robot perceives the world (Line 13). This updates the map

(as described above) by updating the metric map (with any free/occupied space), the

topological graph (with any new frontier nodes in free space and visited nodes), and

the set of semantically labeled objects (with any new object detections). Then the

algorithm enumerates the set of available actions, the policy evaluates the respective

cost of each action, and returns the minimum cost one (Line 16 corresponds to the

action shown in Figure 3.7). The robot executes this action to move to a new place

in the world, unless the policy selected the stop action. Throughout the procedure

the algorithm keeps track of the current SDC, and transitions when a stop action is

called until there are no more SDCs in the sequence.

51

3. Following Directions in Unknown Environments

Summary

The policy described here is at the heart of our approach to following natural language

directions in unknown environments. It makes use of several important components

in natural language processing and semantic mapping, and ties them together in

a simple and elegant algorithm. The policy reasons about the world known so far

through a semantic map St, and enumerates a set of actions At representing the

various places the robot could go next. The policy updates its state as the robot gains

new information, representing the increasing knowledge about the world. Because

our map representation is quite flexible and reflects what most robots would already

be equipped with, we are able to reason about actions in complex unstructured

environments. The policy’s cost function is a weighted sum of features, and we will

now describe how the features of a state-action pair are computed.

3.4 Feature Representation

To evaluate the cost of action a from state s, the policy must compute a linear

combination of features of the state-action pair (Equation (3.10)). The features are

a vector of values that describe (numerically) the properties of each action, and

the goal of the policy is to map from those features pairs to a cost that relate how

well the given action follows the direction: a low cost for an action would mean the

action follows the direction well, a high cost would mean it does not. This feature

representation provides two key benefits:

• features relate the natural language command to the action under consideration,

and

• features enable the policy to generalize to new directions and even different

environments.

In this work, we use a combination of spatial and linguistic features, primarily adapted

from work by Tellex [157] and Kollar [72]. These features fall into several categories

that we will describe below. The inputs required to compute features are the geometry

of the path represented by the action, the object associated with the action, the SDC

fields for the current SDC, and the topological graph stored inside the semantic map.

52

3. Following Directions in Unknown Environments

S
ta

ir
s

E
le

va
to

r

Doors

Action
endpoint

Figure 3.8: When computing features for an action, we only consider the shortest
path between the start and the action’s endpoint (). We do not consider the entire
trajectory history (), as this would result in features that are not meaningful with
respect to the given direction. In this example, they would not be representative of a
“right turn”.

It is important to note that for a given action a ∈ At, the policy computes features

for the shortest path between the start of the current SDC and the action’s endpoint.

This path does not take into account any previous (potentially backtracking) actions,

which ensures previous actions do not obscure the meaningful features of the action we

wish to evaluate. For example if the robot turns into the wrong hallway, backtracks,

and then finally takes the correct right turn (shown in Figure 3.8), we compute

features of the final right turn (without backtracking). Otherwise, features computed

over the entire history (including backtracking) would lose their meaning with respect

to the direction the policy is following. Though the extra distance is not desirable in

the long run, we are interested in features of the final complete path to the action’s

endpoint, without taking into account the backtracking when computing features. If

action features were computed over the entire action history (including backtracking)

the distribution of features for the same direction would be vastly different depending

on the history, which is undesirable.

Geometric features of the action

Geometric features are a function of the path and object geometry: they describe

the shape of the path, the geometry of the object, and the relationship between the

53

3. Following Directions in Unknown Environments

two. These are useful to relate the action to the verb and spatial relation fields of the

Spatial Description Clause (in Section 3.1).

Some example features in this category are: the total angular change of the path

(this might be correlated with actions that turn or go straight), the area occupied

by the object, and the displacement of the path start and end with the landmark’s

center of mass (this might be correlated with actions that go towards or away from

the landmark).

Note that we compute all spatial features for any particular action, regardless of

the contents of the SDC fields (in other words, we do not select which features to

compute). Our learning algorithm will determine which features are important for

which terms. Additionally, the detected object’s label (name) is not used here: this

enables us to learn models for verbs that generalize across different object labels: a

path that turns right to an elevator will have similar geometric features to a path that

turns rights to the stairs. This enables us to decompose reasoning about the shape

of the action and the semantic label of the object in the world, without requiring

examples of directions with every combination of path and landmark (for instance,

turning right to every possible object). These features are a key part of grounding

the verb and spatial relation fields in the Spatial Description Clause: the policy can

learn a mapping from words to geometric features.

Linguistic features of the action

Linguistic features are a function of the object name and SDC landmark field, and

express a similarity metric between what the direction says and what the robot sees.

These are useful to describe the landmark field of the Spatial Description Clause, and

to generalize across synonyms or semantically similar references to the same object

(for example, “elevators” and “lift”), as well as objects that are likely to co-occur

near each other (for example, a refrigerator is likely to be in a kitchen). This ability

to reason about co-occurrences is especially important for robots, since perception

systems will never be able to detect every possible landmark, and some may be

very challenging (for example, detecting kitchens). However, by reasoning about the

context of objects that are likely to co-occur near each other, the robot can follow

directions that refer to undetectable objects by instead perceiving other objects in

54

3. Following Directions in Unknown Environments

the environment.

We expand upon a system developed by Kollar [72] that utilizes WordNet [45, 101]

(a lexical database of English words) and a database of tagged images (extracted from

Flickr) to compare the label of objects in the world and the SDC’s landmark field.

The inputs are pairs of strings, and the output is a vector of real values indicating

how similar the two words are according to various metrics in these two systems.

These linguistic features enable the policy to reason about the similarity between the

landmark mentioned in the direction and objects in the world the robot can detect.

As such, these features are a key part of grounding the landmark field in the Spatial

Description Clause: as the policy considers all possible actions (with different objects,

see Figure 3.6), it can consider the similarity between the object used for the action

(Equation (3.11)) and the landmark described in the SDC.

Features of the stop action

Features for the stop action enable the policy to reason explicitly about the stop

action astop, which either transitions to the next SDC or exits the direction following

procedure. We first compute an indicator feature for whether or not the current

action is a stop action. Additionally, if the action is a stop action we compare the

geometric features of the action with the average geometric features of previously

observed paths for the same verb. For example, if the command is to “turn right,”

the policy will compare the geometric features of the stop action with the average

of previously observed paths for right turns. This effectively measures the distance

between features of the action under consideration and a canonical path, and enables

us to change the cost for actions depending on whether or not the path matches

the expected features for this action. In other words, we can measure how similar

the current action is to other actions (right turns, left turns, etc.) computed from a

corpus of complete paths. These features help ensure that the complete path under

the stop action is representative of the entire direction if the policy is stopping.

Combinations of features

Combinations of the above features enable us to reason about path shapes and

landmark names that occur at the same time. For example, we use the Cartesian

55

3. Following Directions in Unknown Environments

product of the geometric and linguistic features to represent the combination of

the path shape and object label. This provides a more expressive feature space, by

reasoning about actions that match both the expected shape and the SDC’s landmark

(for example, turning right and seeing stairs) instead of either the shape or landmark

name.

3.5 Chapter Summary

In this chapter we have shown how to formulate the problem of following natural

language directions in unknown environments as one of decision making under

uncertainty. Under this formulation, a policy (π) makes a sequence of decisions

(actions) that follows a command, using its knowledge about the world so far. We

leverage prior work in Natural Language understanding to extract structure inherent

in spatial language directions and to model a direction as a sequence of semantically

annotated clauses. We also model the partially-known environment using a mixed

metric, topological, and semantic map (St) that contains a model of the free and

occupied space around the robot, and the location of places in the environment

the robot has either previously explored or that lie on the edge of explored space

(frontiers). The map also stores the set of all landmarks that the robot has previously

observed, so that the policy can reason about their geometry and semantic labels.

The policy state (s) consists of the map, the language command, and the current

position of the robot in the map.

As the robot moves in the environment, our approach incorporates new information

about the world to update the policy’s state. Given a particular state, we can then

compute the set of possible actions available to the robot. These actions encompass

exploration (to new parts of the environment), backtracking (to previously visited

parts of the environment), and declaring that the current clause is finished (when

the policy believes the robot has completed following the direction). After the policy

enumerates all possible actions, it commands the robot to execute the one with

the lowest cost. As the robot moves, it receives new observations that will provide

the policy with more information to make the next decision. The entire process

repeats until the policy calls the stop action, explicitly declaring that it has completed

following the direction.

56

3. Following Directions in Unknown Environments

The policy makes use of a cost function (c) that is parameterized as a linear

combination of features of the state-action pair (φ (s, a)). These features are a

numerical (vector) representation of the action, and are used to relate the action and

command. This makes the cost function efficient to compute and learn. Learning the

policy will be the focus of the next chapter.

57

3. Following Directions in Unknown Environments

58

Chapter 4

Imitation Learning in Unknown

Environments

Success is the ability to go from failure to

failure without losing your enthusiasm.

Winston Churchill

The previous chapter described our approach to following natural language direc-

tions through initially unknown environments. We leveraged several useful properties

of spatial language directions to break down the problem into understanding (and

following) a sequence of structured clauses that contain semantically annotated in-

formation about what the robot should do and see along the way. We introduced a

representation for partially-known environments that combines metric, topological,

and semantic map information. This in turn enables the policy to compute a set of

feasible actions available to the robot, namely, places the robot can go next. The

policy then evaluates the cost of each action, and commands the robot to execute

the minimum cost action. The cost function is parameterized as a linear combination

of features, several of which we described. In this chapter, we focus on learning the

weights w that are at the heart of the policy’s decision making.

We train the policy through imitation learning, using demonstrations of people

(henceforth referred to as experts) giving and following directions. More specifically, we

use inverse reinforcement learning to learn the cost function c the expert was possibly

59

4. Imitation Learning in Unknown Environments

optimizing when providing demonstrations. Intuitively, the goal is to maximize the

agreements between our policy and the expert demonstrations, so that the policy

predicts the expert’s action out of all possible actions. We can treat this as an

iterative imitation learning problem, where the learning algorithm iteratively updates

the cost function by comparing the decisions made by the policy and the expert

demonstration.

The demonstrations consist of a natural language direction, its associated path,

and the landmarks used to follow that direction. Each direction in the training set

has an associated parsed Spatial Description Clause (SDC, Section 3.1) structure,

and the complete path is chunked so that each segment maps to the relevant SDC in

the direction. The landmark used for following each SDC is also annotated by the

user.

In this chapter, we first show in Section 4.1 how to formulate this learning problem

as multi-class online learning, and define the loss function that our learning algorithm

will optimize to maximize agreements between the policy and the demonstrations. In

Section 4.2 we further explore learning in unknown environments, so that the policy

reasons about uncertainty. We then discuss in Section 4.3 an application of a novel

imitation learning framework to our problem that will enable the policy to learn to

recover from mistakes by training on states that include failures. In Section 4.4 we

then show how to use the demonstration data to compute a demonstration policy

given a path. Finally, we demonstrate in Section 4.5 this approach on a corpus of

natural language directions through a floor of MIT’s Stata center.

4.1 Formulation as Online Learning

We treat action prediction as a multi-class classification problem, where we want

the policy to predict the expert’s action out of all actions available from a given

state. Given traces of people following directions, we learn the policy for single-SDC

segments. We assume that the expert’s policy π∗ minimizes the unknown immediate

cost C (s, a∗) of performing action a∗ from state s:

a∗ = π∗ (s) := argmin
a∈At

C (s, a) . (4.1)

60

4. Imitation Learning in Unknown Environments

Since we do not directly observe the true costs of the expert’s policy, we must instead

minimize a surrogate loss function that will penalize disagreements between the

chosen action π (s) and the expert’s demonstrated action π∗ (s) over all examples:

` (s, π∗, π) ∝
∑

examples

π (s) 6= π∗ (s) . (4.2)

Intuitively, if our policy π always agrees with the expert’s policy π∗ for any state s,

then the policy will follow the direction correctly.

The policy selects an action that is different from the expert’s action (a 6= a∗) if

and only if the cost of that action (wTφ (s, a)) is lower than the cost of the expert’s

action (wTφ (s, a∗)). This enables us to treat direction following as a multi-class

structured prediction problem, and penalize disagreements between our policy and

the expert’s using the multi-class hinge loss [34]:

` (s, a∗, w) = max

(
0, 1 + wTφ (s, a∗)−min

a6=a∗

[
wTφ (s, a)

])
. (4.3)

Intuitively, the loss in Equation 4.3 is zero when the cost of the expert’s action is

lower than the cost of all other actions by a margin of one. If the cost of the expert’s

action is more than the cost of another action (again by a margin), the loss is positive

and follows the well-known multiclass SVM loss. This loss can be rewritten as:

` (s, a∗, w) = wTφ (s, a∗)−min
a

[
wTφ (s, a)− lsa

]
, (4.4)

where the margin lsa = 0 if a = a∗ and 1 otherwise. This loss augmentation term

ensures that the expert’s action is better than all other actions by a margin [121].

Adding a regularization term λ to (4.4) yields our complete optimization loss:

` (s, a∗, w) =
λ

2
‖w‖2 + wTφ (s, a∗)−min

a∈At

[
wTφ (s, a)− lsa

]
. (4.5)

Although this loss function is convex, it is not differentiable. However, we can optimize

it efficiently by computing the subgradient of Equation 4.5 and computing action

61

4. Imitation Learning in Unknown Environments

predictions for the loss-augmented policy [121]:

∂`

∂w
= λw + φ (s, a∗)− φ (s, a′) , (4.6)

where a′ is the best loss-augmented action from state s:

a′ = argmin
a∈At

[
wTφ (s, a)− lsa

]
. (4.7)

The subgradient leads to the following update rule for w:

wt+1 ← wt − αt
∂`

∂wt
, (4.8)

with a learning rate αt ∼ O (1/t). We repeat this update for T time steps, or until

the weights converge.

Intuitively, the update rule decreases the cost associated with features of the

expert’s action a∗, and increases the cost associated with features of the predicted

action a′. If the expert action matches the policy’s, the gradient will be zero and the

policy weights will not change (ignoring regularization), as we desire.

4.2 Training in Unknown Environments

Our aim is to have a policy that reasons about the uncertainty inherent in partially-

known environments. As we discussed in Chapter 2, some prior approaches train

a model on a full world map and then attempt to apply it to a partial world map.

Our approach instead trains the policy directly in unknown environments, and treats

learning as several iterations of applying the policy to the training data and then

updating the policy based on the expert demonstrations.

To do this, we embed the policy solver (Algorithm 1) within the learning process,

so that the policy must reason about the same constraints during training and testing.

This ensures the feature distributions at training and testing time are similar: the

topological graphs (and thus the action set) are similar, the available landmarks

obey the same constraints, and more generally the state distributions induced during

training and testing time are close to each other.

62

4. Imitation Learning in Unknown Environments

Furthermore, as we will show next, training the policy in unknown environments

means it will make mistakes and end up in states not visited by the expert, and we

will be able to provide demonstrations on how to recover from these errors.

4.3 Learning to Recover from Mistakes

In a traditional supervised imitation learning setting, the learning algorithm would

optimize the loss in Equation (4.5) over all states provided in the demonstration

(i.e. the states visited by the expert). However, Ross and Bagnell [126] showed that

this may lead to poor performance at test time due to a mismatch between the

distribution of states encountered by the policy at training time and the distribution

of states induced by the policy at test time. Because the learned policy’s predictions

affect future states and observations, states encountered at test time may be vastly

different from states encountered during training. To give a concrete example in

our setting, a small mistake (going through an incorrect door) leads to a completely

different distribution of states than the demonstrations (a different room/hallway with

different landmarks). Since the policy has not seen states like these during training, it

cannot decide how to recover. This causes small errors to compound, and even a small

mistake (the wrong turn) can result in arbitrarily bad performance in our setting

(being in the wrong part of the map). In essence, since the demonstrations only

contain successful examples, the learning process never receives any demonstrations

of errors that are likely to happen while the robot is following directions.

To learn to recover from mistakes, we must include demonstrations of making

errors and how to recover. Since the demonstrations do not include examples of

making mistakes, we collect training data from traces of the current learned policy

(instead of traces of the expert’s policy). We then minimize the loss in Equation (4.5)

over that training data, and iterate. This powerful idea was first introduced by Ross

et al. [129] in a meta-algorithm called DAgger. The intuition is that the learned

policy will make mistakes that we can observe (the error), and the expert’s policy

will provide the correct demonstrated actions (the error recovery). As the learning

algorithm iterates, it will build up demonstration of all inputs the policy is likely to

observe during execution, as shown in Algorithm 2.

This approach learns a policy that does well on the distribution of states induced

63

4. Imitation Learning in Unknown Environments

Algorithm 2 Dataset Aggregation for learning a policy to follow directions over N
iterations. Each iteration applies the current policy to the all training directions
Ztrain using Follow Dir (Algorithm 1).

1: procedure Train Policy(Ztrain, N)
2: Initialize π to any policy in Π parameterized by w
3: for t = 1 to N do
4: Generate a trajectory of state-action pairs D = {s, π (s)} by applying

the current policy to all directions in the training set.
5: Compute the expert’s actions (a∗ = π∗ (s)) for all states in D.
6: Minimize ` (s, a∗, w) over all accumulated examples by computing ∂`/∂w.
7: Update policy according to Equation (4.8).
8: end for
9: return π

10: end procedure

by the learned policy, instead of only the distribution of states visited by the expert.

In the context of following natural language directions, we use the current policy to

collect a set of training state-action pairs (by following each direction in the training

set), and then compute what the expert’s demonstrated actions a∗ would have been

for those visited states. We compute the loss for those examples, update the policy

according to Equation (4.8), and continue iterating until the policy converges. We

illustrate this iterative learning process in Figure 4.1. At each iteration the policy

improves its ability to follow directions by increasing the cost of incorrect actions and

decreasing the cost of the demonstrated actions. Since the state-action trajectory D

is generated by the current policy, it may include states the expert did not visit. To

compute the demonstrated action for any state, we will need a way to compute the

expert’s policy from the demonstration paths.

4.4 Computing the Expert’s Policy

To learn a policy that can recover from mistakes, DAgger requires the ability to

evaluate π (s) and π∗ (s) for any state s. The current policy is easy to evaluate for

any possible state, by simply enumerating the possible actions from that state and

computing costs (see Equation (3.9)). However, since the demonstration data consists

of paths, we only have demonstrated actions for states along each path. Learning

64

4. Imitation Learning in Unknown Environments

Current policy
πt

Expert policy
π∗

Visited trajectory:
D = {s, π (s)}

Minimize loss:∑
D ` (s, a∗, w)

Directions:
Language,

Starting

pose

Expert actions
π∗ (s) ∀s ∈ D

Weight update: ∂`/∂w

Figure 4.1: Iterative imitation learning formulation: To learn the policy π, we follow
a direction to generate trajectories of visited state-action pairs. We then use the
expert policy π∗ to compute the demonstrated actions for the visited states, minimize
the loss function that penalizes disagreements, and update the policy weights.

the policy using Algorithm 2 requires the ability to evaluate π∗ (s) for any state, not

just the states along the demonstration path. While we do not need access to the

expert’s cost function, we do need knowledge of which action the expert would select

from any given state (i.e., the choice the expert’s policy would make). In principle,

this means that training a policy with DAgger would require access to the expert

during the entire procedure, to query what the action should be if the policy visits a

state not along the demonstration path. Since this would be very time-consuming,

we instead make the assumption that a person following directions would realize

when they become lost, backtrack, and continue with the correct action sequence. By

keeping track of the point of divergence between our policy and the expert’s path,

we can determine which actions do not match the expert’s and what the expert’s

action should be. We illustrate this process in Figure 4.2, where our approach uses

the complete expert’s path to extract the expert’s decisions.

This enables the learning algorithm to extract the expert’s action from any given

state visited by the current policy, even if the expert did not visit that state. This

approach allows us to compute the expert’s demonstrated action for any state visited

by the policy, even if that state was not visited by the expert. Because we can

compute the correct action the policy should have taken if it makes a mistake at

training time, the policy can then learn how to recover from mistakes by including

training examples that show failures (and how to recover from them). For example, in

65

4. Imitation Learning in Unknown Environments

Start

S
ta

ir
s

E
le

va
to

r

Doors

(a) The complete demonstrated path for the direction (in
a fully-known environment), with the start location
for the policy. The expert’s policy is derived from
this complete trajectory.

Legend

Action π (s):

Demonstration π∗ (s):

Frontier node:

(b) The following diagrams will show
the learned policy’s actions and
the expert’s demonstrated ac-
tions.

Robot

(c) First action: the computed
and demonstrated actions
match.

S
ta

ir
s

(d) Second action: the policy turns
right too early, whereas the
demonstrated action (from the ex-
pert) is to keep going straight.

Figure 4.2: Figure continues on next page.

66

4. Imitation Learning in Unknown Environments

S
ta

ir
s

(e) The robot is now in a state never visited by the expert (near
the stairs). The expert would have backtracked, so the
demonstrated action is unchanged from 4.2d. The policy’s
chosen action now also matches the expert’s action.

S
ta

ir
s

E
le

va
to

r

Doors

(f) After the robot backtracks, both the robot and expert
policies choose to turn right.

Figure 4.2: Sequence of computed () and demonstrated () actions, to illustrate
how we generate training examples for DAgger. The full expert path turns right
at the elevator, shown in 4.2a. In most cases computing the expert’s policy is
straightforward given the complete path (figs. 4.2c and 4.2d). When the policy does
visit a state not seen by the expert, we can compute the expert’s demonstrated action
by keeping track of the divergence point (e.g., going straight in 4.2e). This approach
provides more training data (by including failures) and enables the policy to learn
how to recover from errors.

67

4. Imitation Learning in Unknown Environments

Figure 4.2, we store all the decisions as training examples, including the cases where

the policy made a mistake by turning right too early (along with the demonstration

of the correct action from that state). If we had trained our policy using only the

states visited by the expert (in the traditional supervised imitation learning setting),

we would have no examples of what to do when the policy takes us to a place not

seen before, and much less training data overall. We now present results showing

that imitation learning can be used to learn policies that can recover from errors.

Figure 4.3: Map of Stata Center at MIT.

68

4. Imitation Learning in Unknown Environments

4.5 Results on a Corpus of Indoor Directions

We now apply our approach on natural language directions through one floor of an

indoor building on MIT’s campus (shown in Figure 4.3). Before describing our results

of evaluating a learned policy through this unknown environment, we will first provide

some details on the environment and corpus of directions used for these results. We

will then present quantitative and qualitative results of applying our approach to the

problem of following natural language directions through an unknown environment.

4.5.1 Methods

To better evaluate the performance of our approach of using imitation learning to

learn to follow directions, in this section of results we abstract away the online map

building and perception and focus on evaluating the learned policies in isolation.

We will show end-to-end results on robot platforms that integrate online mapping

and perception in Chapters 7 and 8. For these results we use a full semantic map

that we incrementally “reveal” to a simulated robot as it travels in the environment.

Although this model is a simplification of reality, it is still realistic under our scope

assumption made in Chapter 1: the simulated sensor must still obey line of sight

and sensing range constraints (computed using the metric map), and the simulated

robot still uses a partial topological graph consisting of visited and frontier nodes.

For this environment, we use a map of MIT’s Stata center collected by Kollar [72].

This map consists of an occupancy grid, a topological graph of the corridors and

rooms, and 211 semantically annotated objects (labels and geometry). Our simulator

incrementally builds up a partial map that becomes available to the policy as the

simulated robot travels through the environment. Another benefit of training in a

simulated environment (while observing all physical constraints) is that we can train

and evaluate the policy quickly; running multiple iterations of our imitation learning

approach on a real robot would be time consuming.

The corpus of directions used for the results in this section are 40 multi-SDC

directions that travel large distances through the map. We generated this corpus

with the goal of remaining close to the corpus of directions collected by Kollar [72],

while being able to focus on simpler directions free from hierarchical clauses or other

69

4. Imitation Learning in Unknown Environments

complex linguistic structure. See Appendix A.1 for more details on the individual

directions and aggregate statistics for the entire corpus. Each direction in the corpus

consists of multiple SDCs, and include multiple verbs (“turn right,” “turn left,” “go,”

etc.), spatial relations (“towards,” “past,” “through”), and refer to a variety of

landmarks. Some of the individual steps do not refer to a landmark (e.g., “Turn

right.”). In many cases, the landmark referenced in the direction may not have the

same name as the object in the environment: for example a “sofa” or “seat” in

the directions may refer to a “couch” in the environment. While these directions

are somewhat simplistic, a person following these directions in an environment they

have never been in before would almost certainly reach the correct destination. We

will discuss possibilities for dealing with complicated directions in our future work

(Chapter 9).

We will show results of our approach by training the policy on a subset of the

directions, and testing on the rest. We split the data into a training and testing set

using two regimes: fixed and random. In the fixed regime, we split the corpus of

directions based on where each direction begins in the map: the training set consists

of all directions starting to the left of a given coordinate, and the testing set consists

of the rest of the directions (those starting to the right of that coordinate). We

selected the split point such that we have 20 training and 20 testing directions. In

the random regime, we randomly sample (without replacement) 20 training directions

and 20 test directions.

Training

At each iteration of the learning process (see Algorithm 2), we apply the current policy

to all directions in the training set. Each direction consists of a natural language

command parsed into a sequence of Spatial Description Clauses (SDCs) and the

complete ground truth path for the direction. Beginning at the starting pose in the

path, the policy then follows the direction using Algorithm 1, taking a sequence of

actions it believes best agree with the natural language command (under the current

cost function). This results in a sequence of state-action pairs visited by the current

iteration of the policy (not necessarily only states visited by the expert). As described

in Section 4.4 and Figure 4.1, the algorithm then computes the expert’s action

70

4. Imitation Learning in Unknown Environments

for each state visited by the policy, then updates the weight vector by computing

the subgradient of the loss function (effectively penalizing disagreements between

the expert policy and the robot policy at the current iteration). This provides the

necessary policy update, and we iterate this process.

During training we solve individual SDCs independently (beginning from their

respective starting poses) instead of the entire sequence of SDCs in the direction. This

is primarily for efficiency: it ensures we receive sufficient training data for all SDCs

in the direction (especially the later SDCs). Training on complete directions would

mean the policy must learn to follow each SDC correctly before it can get training

data for the next SDC: a mistake early in the direction would result in no training

data for SDCs later in the direction. This would require more learning iterations for

the policy to converge on the entire training data. We have furthermore parallelized

the training process so that the learning algorithm can solve each direction on a

separate processor. The total training time for all training directions is a few minutes.

A benefit of our approach is the relatively small number of tuning parameters

required, all of which are in the learning process. For the results that follow, we

used N = 16 iterations of DAgger, and a learning rate for the weight update rule

Equation (4.8) that decreases with:

αt = t−γ, (4.9)

for γ = 0.9. We also used a regularization parameter λ = 1× 10−4. We determined

these values using cross validation, but did not find large differences across variations

of these.

Testing

We evaluate the learned policy by using it to solve all directions in the testing set.

Each direction again consists of a sequence of SDCs, but only the start pose for the

robot is given (position and heading) instead of the full path. The policy once again

follows each natural language direction using Algorithm 1, resulting in a sequence of

state-action pairs for each test direction. In this case, we solve the entire sequence

of SDCs starting from the beginning: when the policy selects the stop action it

transitions to the next SDC in the sequence and begins solving it from the current

71

4. Imitation Learning in Unknown Environments

pose. When the policy selects the stop action on the final SDC it has completed

following the direction, and we take that final pose as the ending location for the

entire direction. Note that both the training and testing phases are applying the

policy in essentially the same fashion (other than loss-augmentation and access to

the full ground truth path during training). Training and testing are very similar:

the learning phase can be thought of as iteratively testing (i.e. solving) the policy,

where the weights change at each iteration.

Our main performance metric is the mean ending distance error from the true

destination (averaged across all held out directions). In other words, we compute

the distance between where the policy ended the direction (declared stop on the

final SDC) and where the ground truth path ended. A smaller average error means

the policy followed the directions more accurately. Additionally, we will compute a

success rate over all held out directions, using different ending distance threshold

(for example, 5 m). This means a direction is considered successful if the ending

distance is less than the threshold. This additional success metric enables us to

measure both aggregate results while being robust to outliers. For example, one

direction could have a large error and increase the average ending error significantly,

but the success rate will only reflect that one direction was incorrect.

4.5.2 Quantitative Results

We now present quantitative results over all held out directions, beginning with

overall results on the entire corpus in the fixed regime. We also perform a feature

ablation on the same set of directions to identify the most important components

in our approach. Lastly, we perform extensive cross-validation experiments in the

random regime.

Overall Results

In the fixed regime (training and testing on a fixed set of directions), our learned policy

is able to follow 85 % of the directions successfully, with an average ending error (over

all directions) of 2.63 m. The results on the same dataset for other configurations,

shown in Table 4.1, indicate that our complete trained policy performs significantly

better than the supervised learning approach (training only on those states present in

72

4. Imitation Learning in Unknown Environments

Table 4.1: Validation results on held out set of directions.

Configuration Mean error (m) Success rate (%)*

Complete trained policy 2.63 85

Supervised learning† 7.12 75

Full semantic map 9.53 60

Random destination‡ 32.43 6
∗ Percentage of directions that finish within 5 m of the destination.
† Training only on states visited by the expert demonstrations.
‡ Expected results for a random vertex (assuming complete graph knowledge).

the demonstrated paths), both in terms of mean ending error and success rate. This

is because our policy has learned to recover from errors (we will show one instance of

this behavior in Section 4.5.3).

Interestingly, giving the policy access to the complete map decreased the perfor-

mance, compared to our approach. We believe this is because the policy still has to

make a sequence of valid actions (i.e. take small steps towards the goal), but could

use objects anywhere in the map (that would otherwise be invisible). In some sense,

real-life visibility constraints help the policy make a better sequence of decisions by

obscuring distant objects. It is likely that a planning-based approach (one that could

optimize a complete path) would perform better than our policy-based approach

when the complete map is available. No surprisingly, selecting a random destination

in the graph has high error and low success rate (computed in expectation over the

set of testing directions).

Ablating features

To evaluate the importance of the various categories of features described in Section 3.4,

we compared the full feature set with various ablations. To do this, we turned off a

single group of features and then re-trained the policy over the same fixed regime

(using the same training and testing directions across trials). Note that only a single

feature category is removed at once (all other features are intact) per trial. The results

for these ablation experiments, shown in Table 4.2 and Figure 4.4, demonstrate that

73

4. Imitation Learning in Unknown Environments

all components of the feature representation contribute significantly to our approach’s

performance as turning off any single one results in decreased performance.

The most dramatic performance drop occurs if we remove the geometric features.

This is not surprising since to understand the command, the policy must reason

about the shape of paths, the geometry of objects, and the relationship between the

two. Removing semantic similarity (linguistic) features does decrease performance

according to both metrics. This demonstrates the usefulness of being able to reason

about synonyms (e.g., sofa and couch) or objects that co-occur (e.g., kitchen and

microwave). Lastly, the performance without feature combinations of these geometric

and linguistic features shows that it is important for the policy to reason about

geometry and semantics together.

These results also indicate that computing stop action features is a very important

part of our approach. Without these features, the policy cannot reason explicitly

about the last action for each SDC, or compare the final action with a canonical

representation of the expected path. Without these features, performance decreases

significantly compared to the complete trained policy. This demonstrates that

reasoning about (and learning) when to stop is challenging yet necessary, and that

the stop action features are an important component that is integral to the success of

our approach.

We also removed some of the words available to the policy to evaluate the im-

portance of reasoning about different commands. Removing either verbs or spatial

relationships decreased performance, indicating that reasoning about both the com-

manded action (e.g., “turn left”) and the relationship to the landmark (e.g., “towards”)

is important. Removing all verbs and spatial relations also resulted in decreased

performance.

Cross-Validation Results

In addition to these fixed-regime results (using the same test train and test directions

across all experiments), we evaluated our approach in the random regime: sampling

a new set of training and testing directions for each trial. By re-training the policy

at each trial, we can get a more detailed representation of the performance of our

approach over many randomly-sampled sets of directions. This provides a more

74

4. Imitation Learning in Unknown Environments

Table 4.2: Effect of feature ablations on same validation set.

Configuration Mean error (m) Success rate (%)*

Full policy 2.63 85

No semantic similarity features 7.49 60

No geometric features 20.21 10

No feature combinations 5.71 65

No stop action features 9.63 40

No verbs 6.96 65

No spatial relations 7.50 70

No verbs or spatial relations 9.21 60
∗ Percentage of directions that finish within 5 m of the destination.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Success Threshold Distance (m)

S
u

cc
es

s
ra

te

Full policy
Supervised learning
No semantic features
No stop action features
No geometric features

Figure 4.4: Success rate curves for different system ablations. The complete trained
policy achieves the highest success rate for all possible distance thresholds.

75

4. Imitation Learning in Unknown Environments

0 2 4 6 8 10 12 14
0

10

20

30

Mean ending distance error (m)

C
ou

n
t

Figure 4.5: Histogram of mean ending distance error for the test directions, across
200 cross-validation trials. Lower error is better.

complete view of how well our approach deals with recovering from errors, handling

various landmarks, and different parts of the environment.

The cross-validation results we present are over 200 trials of the random regime.

We learn a policy on the training set, then evaluate it on the testing set according to

the same metrics presented above. The histogram of mean ending distances (averaged

per trial), shown in Figure 4.5, demonstrate that we are able to learn successful

policies with a low average ending distance error (the distance between the policy’s

final action and the ground truth destination). Similarly, the average success rate

(again, averaged across all test directions in each trial) in Figure 4.6 show that the

learned policy is successful on a majority of the directions for most success thresholds.

At a 5 m threshold, the trained policy averaged 78 % across all test directions in all

trials, and this increases to 85 % at a 10 m threshold.

These results indicate that we are able to successfully learn a policy that follows

natural language directions through unknown environments using only a relatively

small number of directions (approximately half of the directions in the corpus). The

learned policy is able to generalize to new directions, can reason about landmarks it

has never observed, and is able to recover from mistakes. We next present qualitative

results of applying our approach to directions through unknown environments.

76

4. Imitation Learning in Unknown Environments

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Success Threshold Distance (m)

S
u
cc

es
s

ra
te

Figure 4.6: Success rate for all distance thresholds, averaged over 100 cross-validation
trials. This plot shows the mean and standard deviation for the success rate. Higher
success rate is better.

4.5.3 Qualitative Results

In addition to the aggregate results presented above, it is useful to consider individual

directions and inspect (qualitatively) the policy, both during and after training. We

now present a detailed sequence of actions for a single validation direction, and show

the evolution of the policy during learning over two directions in the training set.

Detailed validation of a single direction

Qualitatively, the learned policy is able to make a complex sequence of decisions that

follows the held out natural language direction shown in Figure 4.7. This direction

has three SDCs and refers to various landmarks, one of which (“couch”) is in the

map with a different label (“sofa”). The learned policy begins by exploring the

environment until it discovers the correct landmark (in other words the initial actions

used no landmark). Although the policy makes a mistake, our approach to learning

to recover from mistakes enables it to realize this when it reaches the end of the hall,

and recover by backtracking to the correct corridor. Finally, the policy makes use of

the stop action to declare when it is finished with the current clause and transitions to

77

4. Imitation Learning in Unknown Environments

(a) Starting at the blue square, the policy first
goes straight and explores to find a white-
board.

Whiteboard

(b) The policy finds the whiteboard, but makes
a wrong turn. Here, it realizes it made a
mistake since there is no right turn available.

(c) Because it was trained to recover from mis-
takes, the policy backtracks to the correct
hallway. After a few more actions it calls
the stop action and moves to the next SDC.

Water
Fountain

(d) Following the second SDC: the robot per-
ceives a water fountain, and the policy de-
cides to go towards it.

(e) The policy perceives a second water fountain
in the environment. After reaching this ob-
ject, the policy considers the current SDC
to be complete, calls the stop actions, and
transitions to the third SDC.

Sofa

(f) The policy associates a sofa in the environ-
ment with the “couch” in the direction. After
reaching it the policy once again calls the
stop action, and is now done following the
directions since there are no more SDCs.

Figure 4.7: Sequence of decisions for following the direction “turn right to the
whiteboard, go past the water fountain, go to the couch.” We color-code the actions
and landmarks associated with each SDC, and show in black the previously visited
nodes in the topological graph. Due to lack of space we only show selected decision
points.

78

4. Imitation Learning in Unknown Environments

0 2 4 6 8 10 12 14 16
0

10

20

30

DAgger iteration

M
ea

n
d
is

ta
n
ce

er
ro

r
(m

)

Figure 4.8: Distance loss (mean and standard deviation) for each iteration of DAgger,
computed over the same held out dataset.

the second SDC in the sequence. The policy continues with this SDC, then transitions

to the final SDC. When the policy selects the stop action, it is finished following the

direction. In this particular direction, the ending distance was 0 m for the final SDC,

thus we consider the policy successful.

Evolution of the policy during learning

We first show the evolution of the policy during the learning process by measuring the

error of the policy at that iteration, on the testing set of directions. In other words

we are interested in the policy’s best guess at each iteration of the learning process

compared to the correct destination. In Figure 4.8 we see that the average ending

error over the entire testing set is initially large, and decreases significantly in the

first few iterations as the policy learns to understand the groundings for the different

actions and landmarks in its training set. By iteration 10, the learning algorithm

converges to a stable solution.

More qualitatively, we can observe the resulting paths of individual directions in

the training set as it evolves over learning iterations. In Figure 4.9 we show the final

action for the policy at multiple iterations, and see that the policy slowly learns the

meaning of the word “past.” At the second iteration the policy stops too early, but

79

4. Imitation Learning in Unknown Environments

Stairs

(a) Demonstrated full path in orange, with
stairs highlighted in yellow.

Toilet

(b) Demonstrated full path in orange, with
toilet highlighted in yellow.

(c) Policy at iteration 2 (π2) (d) Policy at iteration 2

(e) Policy at iteration 6 (π6) (f) Policy at iteration 6

(g) Policy at iteration 10 (π10) (h) Policy at iteration 10

Figure 4.9: Evolution of policy (during training) over several iterations. The directions
are “Go past the stairs” (left) and “Go past the bathroom” (right). We show the full
demonstrated paths in 4.9a and 4.9b, starting at the square. The paths in 4.9c - 4.9h
are the final actions resulting from their respective policies at the given iteration in
the learning process, and show the object used by the policy (if any) in yellow. We can
see how DAgger progressively learns the meaning of the spatial relationship “past”
and landmark groundings, including associating the toilet present in the environment
with the bathroom mentioned in the direction.

80

4. Imitation Learning in Unknown Environments

after more training examples it goes towards the landmark. The learning algorithm

continues to provide corrective demonstrations, and the policy eventually successfully

learns the meaning of the word “past” by the tenth iteration.

4.6 Chapter Summary

In this chapter, we discussed how to train the policy π by learning the cost function

weights w from demonstrations of people giving and following directions. The

demonstrations consist of natural language directions, and their associated paths and

landmarks. From these data, we formulated an online learning problem that attempts

to minimize the number of disagreements between the expert’s demonstration and

the current policy, using a maximum margin approach. We used this formulation

as the inner loop of the DAgger meta-algorithm, and at each iteration of the

learning process compare all state-action pairs generated by the current policy’s

decisions against those the expert would have taken. We showed how to obtain

training examples of the expert’s demonstrated action for states not visited by the

expert. This iterative learning process is simple, elegant, and most importantly

fast. Using quantitative and qualitative results, we demonstrated that the learning

method produces policies that can follow natural language directions through unknown

environments and recover from mistakes.

81

4. Imitation Learning in Unknown Environments

82

Chapter 5

Inferring Maps and Behaviors

from Natural Language

What is best in music is not

to be found in the notes.

Gustav Mahler

Our approach so far has only considered the user’s natural language command as

a specification of a task, i.e., what the robot should do. In our problem of following

directions, the user is commanding the robot to go somewhere in an unknown

environment. Moreover, the natural language command may also provide information

about the world in which the robot operates. For example, consider the command

“go to the kitchen down the hallway” (Figure 5.1). If the robot can make use of the

language constraints once it detects the hallway (namely, the fact that the kitchen is

down the hallway), it can take more effective actions towards the kitchen (using the

hallway) instead of relying on blind exploration to find the kitchen directly. When

presented with these types of commands, a robot should reason about the approximate

location of the landmarks in the world, using both information provided by its sensors

and information contained in the language. As we will show, building a model of the

environment from natural language descriptions will improve the robot’s performance

when following directions in unstructured unknown environments.

In this chapter, we propose a novel view of language as a sensor. We build

83

5. Inferring Maps and Behaviors from Natural Language

“Go past the kitchen
down the hall and
then take a right.”

Figure 5.1: One possible natural language command for an autonomous wheelchair.
Since the user may be able to see beyond the robot’s perception range, they may be
able to communicate information about the world and the desired task through a
single natural language command.

upon the work of Chapter 3 where the robot builds a partial map of the world

using its traditional sensors (such as cameras and LIDAR), and enable the robot

to “fill in” the unknown parts beyond its sensor range with information implicit in

the instruction. To accomplish this, we first extract annotations from the user’s

natural language command. These annotations are essentially facts about the world,

inferred from language. We then learn a distribution over possible maps from these

annotations, hypothesizing the locations of landmarks. For instance, in the example

above, the robot would infer the location of the kitchen based on its knowledge of

the hallway. The policy can then use this prior information to make more informed

decisions about where to go next, given the current distribution of maps. As in prior

chapters, the robot updates its internal representation of the world as it travels in the

environment and receives new metric observations (such as the location of perceived

landmarks). The robot continues to execute actions until the policy explicitly declares

it has completed the command. By reasoning and planning in the space of beliefs

over object locations and groundings the policy can reason about parts of the world

that are not initially observed, which enables the robot to follow natural language

directions through unknown environments with improved performance.

This chapter details our approach to inferring a distribution of maps that accounts

for the robot’s sensor measurements as well as the information implicitly contained

in the language, and then inferring what the resulting constraints on the robot’s

84

5. Inferring Maps and Behaviors from Natural Language

behavior should be in this distribution. We begin with an overview of this approach

in Section 5.1, where we factor the problem into three coupled problems: annotation

inference, map inference, and behavior constraint inference. Section 5.2 then details

the natural language understanding component that uses graphical models to convert

free-form natural language into annotations (facts about the world) and behavior

constraints (what the robot should do). The annotations are analogous to sensor

measurements, except they are generated from the language command. We use these

annotations (as well as any sensor observations) in a semantic mapping framework

that we describe in Section 5.3 to infer a distribution of maps.

The work presented in this chapter is a collaboration with Sachithra Hemachandra,

Thomas Howard, and Matthew Walter, and is drawn from two previous publications:

Duvallet et al. [42] and Hemachandra et al. [57]. We present a summary of the entire

approach as a service to the reader of this dissertation. In this chapter we will only

discuss using language to generate a distribution of maps and constraints on the

robot’s behavior that are sent to the policy. We will detail in Chapter 6 how the

policy makes use of this information to generate action sequences, and how to learn a

belief space policy using imitation learning.

5.1 Overview

In this chapter we formulate the problem of following natural language directions as

one of inferring the robot’s future trajectory xt+1:T that is most likely for the given

direction Λ:

argmax
xt+1:T ∈<n

p
(
xt+1:T |Λ, zt, ut

)
, (5.1)

where zt and ut are the respective histories of sensor observations and odometry

data. When a full map of the environment is available, this problem is solved by

conditioning the distribution over the known world model. Without any a priori

knowledge of the environment, we treat this world model as a latent variable St, and

then interpret the natural language command in terms of the latent world model,

resulting in a distribution over behaviors βt. We then solve the inference problem in

85

5. Inferring Maps and Behaviors from Natural Language

Equation (5.1) by marginalizing over the latent world model and behaviors:

argmax
xt+1:T ∈<n

∫
βt

∫
St

p(xt+1:T |βt, St,Λ) · p(βt|St,Λ) · p(St|Λ) dSt dβt, (5.2)

where we now omit the measurement and odometry histories (zt and ut) for conciseness.

Reasoning over the entire space of semantic maps and behaviors would be intractable,

so we instead approximate Equation (5.2) by representing the latent map and behavior

variables as discrete samples from the distribution in a particle filtering framework:

argmax
xt+1:T ∈<n

∑
β
(i)
t

∑
S
(i)
t

p(xt+1:T |β(i)
t , S

(i)
t ,Λ) · p(β(i)

t |S
(i)
t ,Λ) · p(S(i)

t |Λ). (5.3)

Each map sample S
(i)
t represents one possible environment hypothesis, and each

behavior sample β
(i)
t is a set of action constraints within that map.

By structuring the problem in this way, we are able to treat following natural

language directions as three coupled learning problems (visualized using the scenario in

Figure 5.2). First, we infer a distribution over possible environments from the natural

language command (p(St|Λ) term above). As part of this, we extract annotations αt

from the command, representing our knowledge of the environment inferred from the

language (Figure 5.2a). For instance, we may infer the existence of landmarks and

their relative location to each other from the command. We treat these annotations

as observations in a semantic mapping framework (along with data from the robot’s

sensors) to infer a distribution of possible maps (Figure 5.2b). Second, conditioned

on the inferred world models we infer a distribution over behaviors (p(βt|St,Λ) term

above). A behavior in this distribution is a set of action constraints, representing the

intent of the command. Third, we use a learned belief space policy to sequentially

solve for the actions that are consistent with the natural language command and

the distributions of behaviors and maps (p(xt+1:T |βt, St,Λ) term in Equation (5.2),

Figure 5.2c). As in our prior approach, the robot executes one action and updates the

world model distribution based on new commands or sensor observations. The policy

continues to make a sequence of decisions (actions) until it explicitly declares that

the robot is done following the direction (Figure 5.2d). Table 5.1 lists the additional

symbols used in this chapter.

86

5. Inferring Maps and Behaviors from Natural Language

“go to the hydrant behind the cone”

detected cone

@I

Utterance

∃ ocone ∈ O
∃ ohydrant ∈ O
∃ rback

(
ocone, ohydrant

)
∈ R

Annotations

(a) The robot receives a verbal instruction from
the operator and extracts annotations.

@I hydrant
samples

(b) The robot then infers a map distribution from
the utterance and prior observations.

action
@I

(c) It takes an action (green) using the map and
behavior distributions.

actual hydrant pose

@R

(d) This process repeats as the robot acquires
new observations, refining its belief.

Figure 5.2: Visualization of one run for the command “go to the hydrant behind the
cone,” showing the evolution of our beliefs (the possible locations of the hydrant).
The robot begins with the cone in its field of view, but does not know the hydrant’s
location.

Table 5.1: Symbol definitions for map and behavior inference.

α annotation set of objects, regions, and relationships

β behavior desired action and constraints

S map distribution of possible environment models

87

5. Inferring Maps and Behaviors from Natural Language

In order to better represent the space of possible commands (and the additional

navigational information conveyed by the user), we introduce an extended version of

the Spatial Description Clause from Section 3.1. This extended structure contains

two additional fields:

• Navigation Landmark: a landmark name that (once seen) will provide navigation

information.

• Navigation Relation: the geometric relationship between the goal and the

navigation landmark.

These additional fields represent the information about the world contained in the

command by constraining the location of the goal landmark with respect to a

navigation landmark. For example, in Table 5.2 we show one sample command

with implicit information (the kitchen is down the hall), and its decomposition into

a sequence of Extended Spatial Description Clauses. The additional navigation

information (“down the hall”) provides more information about where the kitchen

is, or can help resolve ambiguity if there are multiple matching landmarks. After an

overview of the system architecture, Section 5.2 will focus on the natural language

understanding module that converts the unstructured natural language direction to a

set of annotations and behaviors.

System Architecture

The framework for the semantic map inference and learned belief space policy run-

ning on the robot is illustrated in Figure 5.3. As described above, the inputs are

the natural language command and the robot’s sensor observations. The Natural

Language Understanding (NLU) module extracts annotations from the command:

these represent the information about the environment conveyed in the language (for

example, the existence of landmarks and their spatial relation to others in the world).

The Semantic Mapping component then infers the possible world models efficiently

by storing them as samples of maps from the distribution of possible environments.

Each map in the distribution contains the location of landmarks, inferred from both

sensor measurements (accurate) and the annotations (uncertain). Each map has an

associated likelihood that changes over time, representing how well the map agrees

with the robot’s sensor observations as it moves and discovers new parts of the

88

5. Inferring Maps and Behaviors from Natural Language

Table 5.2: Extended Spatial Description Clauses for the command “Go past
the kitchen that is down the hall and then turn right towards the doors.”
Each semantically annotated clause contains additional information about
the relationships between the goal landmark and other landmarks in the
world.

Λ0 Λ1

Verb go turn right

Landmark kitchen doors

Spatial Relation past towards

Navigation Landmark hall

Navigation Relation down

NLU

annotation inference

semantic mapping

behavior inference

policy

behavior
distribution

map
distribution

annotation
distribution

“go past the
kitchen that is
down the hall”

sensor
observations

parse tree(s)

action

Figure 5.3: Outline of the semantic planning framework. The user provides a command
to the Natural Language Understanding (NLU) module. First, this module extracts
annotations, representing facts about the environment conveyed in the language.
These are used by the semantic mapping module to generate a distribution of possible
maps (including observations from the robot). The NLU module then interprets the
command’s desired intent through a distribution of behaviors. The policy uses the
map and behavior distribution to command a single action to the robot.

89

5. Inferring Maps and Behaviors from Natural Language

environment.

For each map sample, the NLU module then infers a behavior, representing the

intent of the command with respect to the landmarks (known and hypothesized)

present in the map. This effectively grounds the necessary landmarks described in

the command. Lastly, the policy decides where to go, commanding a single action

to the robot. During execution, the robot gains more information and each module

reflects this new information: sensor observations update the map distribution, these

updated maps change the behavior distribution, and the policy updates its desired

next action using this information.

Currently, our implementation of the system only uses a single utterance from

the user. However, our framework is general enough that we could convert further

utterances into new annotations, and use those to update the map and behavior

distribution. Implementing this ability to utilize language from the user during the

robot execution remains future work.

5.2 Natural Language Understanding

Our framework learns models that identify the existence of annotations and behaviors

conveyed by free-form language, and converts these into a form suitable for semantic

mapping and the belief space policy. This is a challenge because of the diversity of

natural language directions, annotations, and behaviors. We perform this translation

using the Hierarchical Distributed Correspondence Graph (HDCG) model [59], which

is an extension of the Distributed Correspondence Graph (DCG) [60] that offers

improved efficiency. The DCG exploits the grammatical structure of language to

formulate a probabilistic graphical model that expresses the correspondence φ ∈ Φ

between linguistic elements from the command and their corresponding constituents

(groundings) γ ∈ Γ. The factors f in the DCG are represented by log-linear models

with feature weights learned from a training corpus. The task of grounding a given

expression then becomes a problem of inference on the DCG model.

The HDCG model employs DCG models in a hierarchical fashion, by inferring

rules R to construct the space of groundings for lower levels in the hierarchy. At any

one level, the algorithm constructs the space of groundings based upon a distribution

90

5. Inferring Maps and Behaviors from Natural Language

go to the

kitchen

that is down the

hall

VP PP NP NP SBAR WHNP S VP ADVP NP

γ4 γ4 γ4

γ3 γ3 γ3 γ3 γ1 γ1 γ1 γ1 γ2γ3 γ3γ3 γ3

γ1=region(hallway,down)
γ2=object(hallway)
γ3=object(kitchen)
γ4=relation(down,kitchen,hallway)

Figure 5.4: The active groundings in annotation inference for the direction “go to
the kitchen that is down the hall”. The two symbols at the root of the sentence
(γ3,γ4) are sent to the semantic map to fuse with other observations.

over the rules from the previous level:

Γ→ Γ (R) . (5.4)

The HDCG model treats these rules and the structure of the graph as latent variables.

Language understanding then performs inference on the marginalized models:

argmax
Φ

∫
R

p (Φ|R,Γ (R) ,Λ,Ψ) · p (R|Γ (R) ,Λ,Ψ) (5.5)

argmax
Φ

∫
R

∏
i

∏
j

f
(
Φij ,Γij (R) ,Λi,Ψ, R

)
·
∏
i

∏
j

f
(
R,Λi,Ψ,Γij (R)

)
. (5.6)

Annotation Inference

An annotation is a set of objects, regions, and relationships. We define a region as

an object type paired with a spatial relation. A relationship is a spatial relation

between ordered pairs of unique objects; the number of possible combinations of

annotations is equal to the power set of the total number of symbols. The HDCG

model infers a distribution of graphical models to efficiently generate annotations by

assuming conditional independence of constituents and eliminating symbols learned

91

5. Inferring Maps and Behaviors from Natural Language

go to the

kitchen

that is down the

hall

VP PP NP NP SBAR WHNP S VP ADVP NP

γ8 γ7 γ7 γ7 γ5 γ5 γ5 γ5 γ6γ8 γ7

o3(elevator lobby)

o1(kitchen)

o2(hallway)

o4(lab space)

robot

γ5=region(o2,down)

γ6=o2

γ7=o1

γ8=action(navigate,o1)

Figure 5.5: The active groundings in behavior inference for the direction “go to the
kitchen that is down the hall” in the context of a inferred map with 4 objects. In
this example a navigate action with a goal relative to o1 would be sent to the policy
planner.

to be irrelevant to the utterance. Figure 5.4 illustrates the model for the direction

“go to the kitchen that is down the hall.” In this example only 4 symbols (two objects,

one region, and one relationship) are active in this model. At the root of the sentence

are the symbols for a down spatial relation between a kitchen and hallway objects,

and the kitchen object. The semantic map will fuse these annotations with other

observations to infer a distribution over the possible environment models.

Behavior Inference

A behavior is a set of desired actions and path constraints that represent the intent

of the natural language command. An action is represented using Extended Spatial

Description Clauses (Table 5.2), specifying the objective of the natural language

command. The constraints are spatial relations with respect to an object in the

semantic map, and specify how the robot should perform the desired objective. Just

92

5. Inferring Maps and Behaviors from Natural Language

(a) Map with a hypothesized hydrant
behind the left cone.

(b) Map with a hypothesized hydrant
behind the right cone.

Figure 5.6: Two possible behavior groundings for the command “go to the hydrant
behind the cone” in two different semantic maps, with the goal landmark circled in
red. The cones in these maps are detected (known), while the hydrant is hypothesized.
The behavior distribution enables us to reason about the desired behavior in the
space of a semantic map distribution.

as in annotation inference, the space of groundings also grows as the power set of

the total number of actions and constraints, so we again apply the Hierarchical

Distributed Correspondence Graph to infer a distribution of behaviors. The HDCG

model eliminates irrelevant action types, objectives, and spatial relations to efficiently

infer behaviors. Figure 5.5 illustrates the model for the direction “go to the kitchen

that is down the hall” in the context of an inferred map. In this example a navigate

action with a goal relative to o1 would be inferred as the most likely behavior for the

policy planner.

As we maintain samples of the map distribution, we infer samples from the

behavior distribution β
(i)
t for each sampled semantic map S

(i)
t . The joint likelihood of

each behavior and semantic map is:

p(β
(i)
t , S

(i)
t) = p(β

(i)
t |S

(i)
t) · p(S(i)

t). (5.7)

By inferring behaviors for each sampled map, we explicitly interpret the meaning

93

5. Inferring Maps and Behaviors from Natural Language

of the natural language command in the map distribution. For example, the two

hypothesized hydrants in Figure 5.6 are the goal landmarks in their respective semantic

maps. This combination of reasoning about possible maps and the resulting behavior

distributions within these maps provides a probabilistic representation of likely maps

and the command’s intent within this map distribution.

5.3 Semantic Mapping

We represent the world model as a modified semantic map St = {Gt, Xt} that consists

of a metric and topological representation of the environment [168]. The topology Gt

consists of a collection of nodes {ni} and edges denoting the connectivity between

nodes. Nodes are spatial entities that represent either a region Ri or an object Oi,

and can be observed by the robot or hypothesized using the language annotations.

Each node has a label describing the type of region (e.g., kitchen, hallway) or object

(e.g., cone, trash can). Regions are connected by edges when the robot traverses

between two regions, or when language indicates the existence of a spatial relation

between two regions (e.g., that the kitchen is down the hallway). Similarly, objects

are connected by edges when the robot detects an object using its perception system,

or when the command specifies a spatial relationship (e.g., “behind”).

The metric map Xt is the vector of all poses xi associated with each node ni.

The robot’s perception system provides the location of objects and the spatial

extent of regions as the robot drives in the environment. Regions represent spatially

coherent areas in the environment that are intended to be compatible with a human’s

decomposition of space (e.g., rooms and hallways).

The natural language command provides annotations indicating the existence of

different objects or regions in the environment, along with their location relative to

other entities. We formulate a distribution of world models consistent with these

annotations (α) by treating them as observations in a filtering framework, and combine

these with observations from the robot’s sensors (z) to maintain a distribution over

94

5. Inferring Maps and Behaviors from Natural Language

the semantic map:

p(St|Λ, zt, ut) ≈ p(St|αt, zt, ut) (5.8a)

= p(Gt, Xt, |αt, zt, ut) (5.8b)

= p(Xt|Gt, α
t, zt, ut) · p(Gt|αt, zt, ut), . (5.8c)

The factorization within Equation (5.8c) models the relationship between the topology

(graph Gt) and the induced metric map (Xt) that mimics a pose graph [65]. We

maintain this factored distribution efficiently over time with a Rao-Blackwellized

particle filter, where we use particles to maintain a sample-based approximation to the

distribution over the topology, and a Gaussian distribution to model the distribution

over metric poses [39]. Each semantic map particle:

S
(i)
t = {G(i)

t , X
(i)
t , w

(i)
t } (5.9)

consists of a sampled environment topology G
(i)
t , a Gaussian distribution over

poses X
(i)
t , and a particle weight w

(i)
t that represents the map’s likelihood.

We update the map distribution (Equation (5.8a)) in three steps. First, when

the robot receives new observations (from sensors) or annotations (from language)

we sample modifications to the graph that update the topology for each particle.

Second, we use these sampled graph topology modifications to perform a Bayesian

update to the pose distribution. Third, we update the weight of each particle based

on the likelihood of generating the given observations, and resample as needed to

avoid particle depletion. We now outline this process in more detail.

During the proposal step, we first add an additional node and edge to each

sample topology that model the robot’s motion ut, yielding a new topology S
(i)−
t . We

then sample modifications to the graph ∆
(i)
t = {∆(i)

αt ,∆
(i)
zt } based on the most recent

annotations αt and sensor observations zt:

p(S
(i)
t |S

(i)
t−1, αt, zt, ut) = p(∆(i)

αt
|S(i)−
t , αt) · p(∆(i)

zt |S
(i)−
t , zt) · p(S(i)−

t |S(i)
t−1, ut), (5.10)

where ∆
(i)
αt are the modifications based on natural language observations and ∆

(i)
zt

are the modifications based on the robot’s sensor observations. This updates the

95

5. Inferring Maps and Behaviors from Natural Language

proposed graph topology S
(i)−
t with the graph modifications ∆

(i)
t to yield the new

semantic map S
(i)
t .

These modifications can add or delete regions, objects, or edges in the graph.

We sample the graph modifications from two independent proposal distributions for

annotations αt and robot observations zt. This is done by sampling a grounding for

each observation, and deciding the required modification to the graph implied by the

grounding. We now describe the graph modifications induced by natural language

annotations and robot observations.

Graph modifications from natural language

When the algorithm receives a set of annotations αt := {αt,j} inferred from the

natural language command, it samples a graph modification ∆
(i)
αt for each particle:

p(∆(i)
αt
|S(i)−
t , αt) =

∏
j

p(∆(i)
αt,j
|S(i)−
t , αt,j). (5.11)

An annotation αt,j can imply the presence of spatial entities (a region or an object)

as well as a spatial relationship between two entities. For example, the command

“go to the kitchen” implies the presence of a kitchen, and the command “go to the

kitchen that is down the hallway” implies a spatial relationship between the kitchen

and hallway (as well as their existence). Our semantic mapping algorithm treats

these two types of annotations differently, described in more detail below. In both

cases, the result is a modification to the topological graph that incorporates any new

information contained in the annotation.

For annotations that describe the existence of spatial entities (regions or objects),

the algorithm updates the topological graph with nodes and edges that reflect the

information conveyed by the annotation in each map particle and the current semantic

map distribution. The algorithm first chooses whether to add a new entity to the

map or ground the annotation to an existing entity. This step utilizes a Dirichlet

prior to account for the fact that the annotation may refer to new or existing entities

in the map. Specifically, as the number of entities in the map with the same label

increases, the likelihood of sampling a new one decreases. The algorithm adds a new

entity to the map by adding a new node to the topological graph (a region or object

96

5. Inferring Maps and Behaviors from Natural Language

depending on the annotation type) and then samples a new metric constraint for

the associated edge. The sampled metric constraint accounts for the parts of the

environment the robot has previously detected to prevent placing new objects or

regions in previously visited areas. If the algorithm associates the annotation with

an existing spatial entity in the map (e.g., a previously detected object), there is no

modification to the graph.

For annotations that express a relationship between pairs of spatial entities, the

algorithm samples an update to the graph topology such that the map particle

agrees with the information in the annotation (in this case, both landmarks and

the spatial relationship between them). For example, “the kitchen that is down the

hallway” implies the “down” relationship between a “kitchen” and “hallway.” This

step attempts to sample groundings for both spatial entities in the current map, but

will add new spatial entities if necessary. For example, if there is only a “hallway” in

the map, the algorithm will sample a new “kitchen” region. Any sampled regions

will obey the given spatial relationship (according to features of the location of the

regions and the location of the robot at the time of the utterance). Additionally, the

robot keeps track of the area in the environment it has already observed, and will

sample new hypothesized spatial entities in areas it has not already visited.

Graph modifications from robot observations

As the robot travels through the environment, it receives two different types of sensor

observations that will also update the topological graph: region observations and

object observations. Conceptually, the graph modifications from sensor observations

are similar to those from language annotations, although each sensor observation

provides more precise information about the spatial entity than language does (e.g., its

metric pose, spatial extent, or connectivity). When the semantic mapping algorithm

receives a set of observations zt := {zt,j} from the robot’s perception system, it

samples a graph modification ∆
(i)
zt for each particle:

p(∆(i)
zt |S

(i)−
t , zt) =

∏
j

p(∆(i)
zt,j
|S(i)−
t , zt,j). (5.12)

97

5. Inferring Maps and Behaviors from Natural Language

The observations zt,j consist of either region observations (zR) or object observa-

tions (zO). Our semantic mapping algorithm treats these two types of observations

differently, described in more detail below. In both cases, the result is a modification

to the topological graph that incorporates any new information from the robot’s

sensor stream.

The first type of observations provided by the robot’s sensors are region observa-

tions. Each region is a spatially coherent area in the environment (e.g., hallway, room,

kitchen, etc.) and the robot’s sensors measure the spatial extent and semantic label

for the region it is in currently. As the robot moves through the environment, each

region observation results in one of three possible modifications to the underlying

topological graph:

• If the robot is still in the same region (as the previous observation), it updates

the current region’s spatial properties without modifying the graph.

• If the robot revisits a known region, it also updates that region’s properties and

associates its current location with that region.

• If the robot receives a region transition observation (e.g., the robot moved

from one region to another), it creates a new region and updates its spatial

properties.

If the robot creates a new spatial region, it will update hypothesized regions that match

the new region’s label (e.g., detecting a hallway that was previously hypothesized), or

resample the location of hypothesized regions with a spatial relation to the new region

(e.g., a hypothesized kitchen that is “down” from the newly-observed hallway). These

region-based modifications to the topological graph incorporates new information

from the robot’s sensor streams to update the hypothesized semantic map.

The second type of observations provided by the robot’s sensors are object

observations. When the robot detects an object in the world (e.g., a hydrant or

cone), the robot’s sensors measure the object’s relative pose and type. If the object is

already known in the map, we add an edge between the robot’s current node and the

object’s node, encoding the metric constraint provided by the observation. If there is

no known object in the map but we have a hypothesis for the same object type, we

attempt to ground the observation to a hypothesized object, and update its location

appropriately. This step additionally ensures that we do not delete a hypothesized

98

5. Inferring Maps and Behaviors from Natural Language

object that would be unlikely for this observation (i.e. a hypothesized object that

is very far away). If the map has no previous knowledge about this new detected

object (observed or hypothesized), we add a new node to the map representing

the object’s location and metric constraint. With this process, the semantic map

algorithm maintains a probabilistic distribution over each object’s location.

Re-weighting particles

After proposing modifications to each particle, we perform a Bayesian update to the

map’s Gaussian distribution of metric poses. We then re-weight each particle to take

into account the likelihood of the semantic map (S) generating the received language

annotations (α) and robot observations (z):

w
(i)
t = p(zt, αt|S(i)

t−1)w
(i)
t−1 = p(αt|S(i)

t−1) · p(zt|S(i)
t−1) · w(i)

t−1. (5.13)

This accounts for the difference between the graph proposal distribution (i.e. map

modifications) and the resulting distribution after an observation. Intuitively, proposed

maps that agree with sensor observations (a hypothesized landmark is confirmed by

the robot) will receive a high weight, whereas proposed maps that do not agree (an

expected landmark was not detected) will receive a low weight. If the particle weights

fall below a threshold, we resample particles to avoid particle depletion [39]. The

factoring of Equation (5.13) enables us to compute the likelihood of both observation

types separately: language observations (annotations) and robot sensor observations

(regions or objects). These are described in more detail below.

To compute the likelihood of annotations, we use the natural language grounding

likelihood under the map at the previous time step. A particle with an existing pair

of regions (or objects) that agree with the language constraint will have a higher

weight than one without. We evaluate this using the spatial relationship specified in

the annotation.

To compute the likelihood of region observations, we give a low likelihood to new

regions that overlap with a previously traversed region. We also consider the region

type associated with the current region and calculate the likelihood of generating this

observation given the unobserved regions in the particle. Only hypothesized regions

that are very close to the robot can influence the region type observation.

99

5. Inferring Maps and Behaviors from Natural Language

To compute the likelihood of object observations, we use both positive and negative

information. We calculate the likelihood of observing the object at the given location

using the relative constraint of the object’s current location in the map. We also

calculate the likelihood of not observing the object using the sensor’s field of view

and the pose of the hypothesized object relative to the robot. This results in a lower

particle weight for sampled maps with hypothesized objects in locations inconsistent

with the detected parts of the world.

Semantic Map Inference Summary

The robot’s representation of the world reflects all information available to the

robot, both from its sensor observations and the natural language annotations. The

algorithm infers a distribution of world models consistent with this information, stored

as semantic map particles. Each particle contains the environment’s graph topology,

a distribution over metric poses, and a weight indicating the likelihood of that map

particle. The algorithm updates this map distribution in three steps:

1. It samples modifications to the graph topology based on annotations (from the

natural language direction) and observations (measurements from the robot’s

sensors).

2. It updates the metric pose distribution of nodes in the topological graph.

3. It re-weights each map particle to reflect the likelihood of the updated semantic

map given the information available to the robot.

The result is a set of particles that efficiently represent the robot’s knowledge of

the world within and beyond its sensing range: the map contains both detected and

hypothesized spatial entities.

5.4 Chapter Summary

This chapter introduced a novel view of language as a sensor that can be used

to build uncertain maps. Similar to our approach in previous chapters, the robot

builds a partial map of the environment using its physical sensors, such as cameras

and LIDAR. Then it “fills in” the unknown parts of the map using information about

the world that is contained in the natural language direction. In other words, using

100

5. Inferring Maps and Behaviors from Natural Language

a single command, the user can communicate both a task and a description of the

environment.

Our solution is to divide the problem of reasoning about the unknown parts of

the environment into three coupled learning problems:

• understanding the natural language command to generate annotations (facts

about the world) and behaviors (what the robot should do),

• inferring a distribution of maps that is consistent with observations from the

robot’s sensors as well as the language annotations, and

• learning a belief space policy that makes a sequence of decisions using the

distribution of maps and behaviors.

This deconstruction provides an efficient solution to the entire problem of understand-

ing natural language directions in unknown environments, and allows us to separate

the uncertainty present in each component.

This chapter described a factored inference problem over latent world models

and behaviors that represents the above decomposition. Using the Hierarchical

Distributed Correspondence Graph (HDCG), a probabilistic graphical model that

exploits the grammatical structure of language, we can infer a set of annotations

present in the language. These annotations represent facts that we infer from the

language, namely, the existence of landmarks and relationships between them (for

example, the kitchen is down the hallway). Because annotation inference does not

require sensor observations, the robot could hypothesize a map of the environment

based entirely on language.

The natural language understanding module infers a distribution of desired

behaviors for the command: action constraints that represent the intent of the

command. To reason about the more complex space of possible directions (those that

include some navigational information), we extended the Spatial Description Clause

formulation to include two optional additional fields: a navigation landmark and a

navigation relation. These fields are used to (a) clarify which landmark is correct in

the case of ambiguity, and (b) provide a helpful hint as to the goal landmark location

by utilizing relations between landmarks. We use this additional information when

hypothesizing a distribution of valid semantic maps and following the direction.

To infer this map distribution, we extended an existing semantic mapping frame-

101

5. Inferring Maps and Behaviors from Natural Language

work to treat the annotations as sensor observations in a probabilistic SLAM filter.

This generates a distribution of possible environments that we represent efficiently

using a Rao-Blackwellized particle filter. The map distribution takes into account

information about landmarks the robot has perceived, as well as landmarks that

were described by the user in the natural language command. As the robot travels

through the environment, our approach updates the distribution of maps to reflect

new information (e.g., sensor observations). In addition to providing an informative

interface that can explicitly represent the robot’s belief, this map distribution provides

extra information for the policy to use when following directions.

The next chapter will focus on reasoning in this space of map distributions to plan

a sequence of actions that follow the direction. This is significantly more challenging

as the policy must reason about many possible map hypotheses when evaluating each

action instead of a single partially-known world.

102

Chapter 6

Reasoning and Learning in Belief

Space

Logic will get you from A to Z;

imagination will get you everywhere.

Albert Einstein

Inferring a distribution of semantic maps from the natural language command as

described in Chapter 5 provides several key benefits to our approach for following

natural language directions through unstructured unknown environments. First, it

allows us to use relative information between landmarks as additional information

when following directions (for example, the relationship “behind the cone” given

in a command). Second, it provides an explicit and intuitive representation of the

uncertainty present in the environment in addition to the information available to

the robot, represented as a distribution of maps which can be shown to the user.

However, the policy must now reason in the belief space of maps – instead of a

single partially-known environment – to make a sequence of decisions and follow the

direction. This map distribution represents possible environment models that are

consistent with all the information available to the robot; most importantly the maps

contain the location of hypothesized landmarks relevant to the direction. The policy

should guide its decisions using the additional information from the map samples.

This is challenging because each action the policy considers must now take into

103

6. Reasoning and Learning in Belief Space

Semantic Map
Distribution

Policy

Action

Observation

State,
Actions

Map Samples
argmin cost(action)

Robot motionMap updates

Figure 6.1: Belief space approach formulation as sequential decision making using
a semantic map distribution: the robot infers a distribution of semantic maps,
represented as map samples. The policy evaluates the cost of each action in the
context of this distribution of maps, and chooses the one with the lowest cost. After the
robot moves and receives a new observation, it updates its semantic map distribution.
The policy repeats this process until it explicitly declares that it is done following
the direction.

account a distribution of landmarks, which induces a distribution of features.

This chapter describes our belief space policy and how we train it. Our general

approach for following natural language directions (as sequential decision making

under uncertainty) remains largely unchanged: the policy selects a single action (out

of many possible actions) to execute on the robot, and the policy continues making

a sequence of decisions (updating its semantic map distribution) until it explicitly

declares it is done. The main addition to the framework is that the robot infers a

distribution of semantic maps using its sensor observations and the natural language

commands, represented as samples in a particle filter (shown in Figure 6.1).

To utilize this additional information, we first present a belief space policy that

reasons about the distribution of semantic maps to follow natural language directions

in Section 6.1, by embedding the distribution of actions in a Reproducing Kernel

Hilbert Space (RKHS). This enables us to project the distribution of features into a

104

6. Reasoning and Learning in Belief Space

space where the policy can once again compute a cost function for each action. This

approach is efficient and enables us to use a cost function to follow natural language

directions in a distribution of possible environments.

We then describe in Section 6.2 a novel belief space imitation learning approach

to train these belief space policies. Using the same demonstrated examples, we learn

a belief space cost function that reasons explicitly about the distribution of possible

environments. We present corpus-based experiments in Section 6.3 which show that

our combined approach of inferring a map distribution and reasoning in belief space

improves our performance on a corpus of complex directions. Furthermore, we will

show that this approach can handle some types of ambiguous directions that our

prior approach could not successfully follow.

6.1 Belief Space Reasoning

Our general approach to the problem of following natural language remains largely

unchanged from that of Chapter 3. The robot builds up a mixed metric, topological,

and semantic map of the world, except that it now predicts the parts of the world

that lie beyond its sensor range (as described in Chapter 5). The policy will still

enumerate the set of feasible actions using the topological graph (generating paths to

visited and frontier nodes), and also considers the stop action (to represent finishing

the direction). The belief space policy will evaluate the cost of each action, and

execute the one with the lowest cost on the robot. Then, the policy will update its

map distribution with any new sensor measurements or annotations. The robot will

continue making decisions until the policy declares it has completed following the

direction by selecting the stop action.

However, a key difference from the previous work is that the robot now maintains

a distribution over possible semantic maps (instead of a single partially-known map),

which induces a probability distribution of features per action. More specifically,

whereas each action in Chapter 3 was a path paired with a single landmark, the belief

space action in this chapter is now a path paired with a distribution of landmarks:

At = {path (x, v) ∈ Gt ∪ astop} × p (Ot) . (6.1)

105

6. Reasoning and Learning in Belief Space

Here the landmark distribution p (Ot) represents the semantic map’s knowledge about

where an object could be. For example, a landmark detected by the robot would

have a very localized distribution of particles (low uncertainty), whereas a landmark

hypothesized from language might have a larger spread of particles (high uncertainty).

The intuition behind each belief action is the same: actions can explore, backtrack,

or stop based on the path in the topological graph. However, each action is now

reasoning about a distribution of semantic maps, representing the possible object

locations for the landmark given in the command.

The belief space policy must make a sequence of decisions using the distribution

of semantic maps p (St):

π (x, p(St)) = argmin
a∈At

c (x, a, p(St)) . (6.2)

This belief space action formulation means the policy must actually compare different

probability distributions of features (one for each actions), and selects the one it

believes will best follow the direction. This requires a way to represent and compute

distances between probability distributions.

Fortunately, Hilbert Space embeddings have been shown to preserve the necessary

information of these distributions while permitting efficient computation, which will

enable us to learn from these distributions [105, 147]. Our policy will thus embed the

action feature distribution in a Reproducing Kernel Hilbert Space using the mean

feature map, which we now describe in more detail.

Belief Space Reasoning using Kernel Distribution Embedding

To reason about the distribution of landmarks when computing the cost of any action a

in Equation (6.2), we embed the semantic map distribution in a Reproducing Kernel

Hilbert Space (RKHS) [147, 148, 149]. The RKHS is a generalization of classical

kernel methods to represent probability distributions (in our case, a distribution over

action features induced by the semantic map distribution). For a good overview of

Hilbert space embeddings for distributions, see Smola et al. [147].

We will thus represent our cost function as the mean embedding of a feature

map [147]. More specifically, in our approach we first compute the features of an action

in each map sample independently, then aggregate the resulting feature distribution

106

6. Reasoning and Learning in Belief Space

a1

a2

Kitchen

Kitchen Start

φ(a1, S
1), φ(a1, S

2)

φ(a2, S
1), φ(a2, S

2)

Figure 6.2: Simplified illustration of computing feature moments in the space of
hypothesized landmarks (in this case two kitchens). To compute the features over a
landmark distribution, we compute the features of the action with each hypothesized
landmarks. We then aggregate them by computing moment statistics across the
distribution. For instance, to compute the cost of action a1 we will aggregate the
features across the two possible maps: φ(a1, S

1) and φ(a1, S
2).

by taking the first K moments of the features (across all map samples S
(i)
t):

Φ̂1 (x, a, St) =
∑
S
(i)
t

p(S
(i)
t) φ

(
x, a, S

(i)
t

)
(6.3)

Φ̂2 (x, a, St) =
∑
S
(i)
t

p(S
(i)
t)

(
φ
(
x, a, S

(i)
t

)
− Φ̂1

)2

(6.4)

. . .

Φ̂k (x, a, St) =
∑
S
(i)
t

p(S
(i)
t)

(
φ
(
x, a, S

(i)
t

)
− Φ̂1

)k
(6.5)

Intuitively, this computes features for the action and all hypothesized landmarks

individually, aggregates these feature vectors, and then computes moments of the

feature vector distribution (expected value, variance, and higher order statistics). We

use the same features as those in Section 3.4 for individual landmarks. The process of

computing aggregate features over a landmark distribution is illustrated in Figure 6.2,

where the location of the kitchen is unknown but has two possible hypotheses (both

used to compute features).

The cost function in Equation (6.2) can now be rewritten as a weighted sum of

107

6. Reasoning and Learning in Belief Space

the first K moments of the feature distribution:

c (x, a, St) =
K∑
i=1

wTi Φ̂i (x, a, St) . (6.6)

By concatenating the weights and moments into respective column vectors

W := [w1; . . . ;wk] (6.7)

F := [Φ̂1; . . . ; Φ̂k] (6.8)

we can rewrite the policy in Equation (6.2) as minimizing a weighted sum of the

feature moments Fa for action a :

π (x, St) = argmin
a∈At

W TFa. (6.9)

Note that W ∈ RK·d where d is the feature vector dimensionality, so this increases the

number of parameters to learn. As we will show next, we can apply a simple variant

of the imitation learning approach from Chapter 4 to learn a policy that reasons in

the map distribution.

6.2 Imitation Learning in Belief Space

We train the policy using imitation learning, by treating action prediction as a multi-

class classification problem. Given an expert demonstration, we wish to correctly

predict the expert’s action out of all possible actions from the same state. Although

Chapter 4 introduced imitation learning for training a policy to follow directions,

it operated in partially-known environments without any prior over the undetected

parts of the environment. In this chapter, we train the policy using a distribution of

hypothesized maps to learn a belief space policy.

We assume the expert’s policy π∗ minimizes the unknown immediate cost:

C(x, a∗, St) (6.10)

of performing the demonstrated action a∗ from state x, under the current belief

108

6. Reasoning and Learning in Belief Space

distribution St. However, since we cannot directly observe the true costs of the

expert’s policy, we must again minimize a surrogate loss that penalizes disagreements

between the expert’s action a∗ and the policy’s action a, using the multi-class hinge

loss [34]:

` (x, a∗, c, St) = max

(
0, 1 + c (x, a∗, St)−min

a6=a∗
[c (x, a, St)]

)
. (6.11)

The minimum of this loss occurs when the cost of the expert’s action is lower than

the cost of all other actions, with a margin of one. This loss can be re-written and

combined with Equation (6.9) to yield:

` (x, a∗,W, St) = W TFa∗ −min
a

[
W TFa − lxa

]
, (6.12)

where lxa = 0 if a = a∗ and 1 otherwise. This ensures that the expert’s action is

better than all other actions by a margin [121]. Adding a regularization term λ to

Equation (6.12) yields our complete optimization loss:

` (x, a∗,W, St) =
λ

2
‖W‖2 +W TFa∗ −min

a

[
W TFa − lxa

]
. (6.13)

Although this loss function is convex, it is not differentiable. However, we can

optimize it efficiently by computing the subgradient of Equation (6.13):

∂`

∂w
= λW + Fa∗ − Fa′ , (6.14)

for the best loss-augmented action a′ at state s:

a′ = argmin
a

[
W TFa − lxa

]
. (6.15)

Note that a′ is simply the solution to our policy using a loss-augmented cost. This

leads to the update rule for W :

Wt+1 ← Wt − α
∂`

∂w
(6.16)

with a learning rate α ∝ 1/tγ. Intuitively, if the current policy disagrees with the

109

6. Reasoning and Learning in Belief Space

expert’s demonstration, Equation (6.16) decreases the weight (and thus the cost) for

the features of the demonstrated action Fa∗ , and increases the weight for the features

of the planned action Fa′ . If the policy produces actions that agree with the expert’s

demonstration, the only weight update will be regularization.

Similarly to our approach from Chapter 4, we train the policy using the DAgger

(Dataset Aggregation) algorithm [129], which learns a policy by iterating between

collecting data (using the current policy) and applying expert corrections to the

policy’s decisions. Key to this approach is that we collect training information from

all states visited by the policy, not just states that were in the demonstration. This

enables us to learn a policy that does well on the distribution of states induced by

the learned policy, instead of only the distribution of states that were visited by the

expert.

Treating direction following in the space of possible semantic maps as a problem

of sequential decision making under uncertainty provides an efficient approximate

solution to the belief space planning problem. By using a kernel embedding of the

distribution of features for a given action, we still reason about the distribution of

landmarks in the semantic map. Using imitation learning for training the policy is

simple, elegant, and requires no complex engineering of components or tuning of

parameters.

6.3 Results

We evaluate our approach on a corpus of directions that expands upon the corpus

presented in Chapter 4. This expanded corpus contains directions that include

references to navigation landmarks. For example, the direction “go to the door across

from the whiteboard” specifies which of many doors is the correct one. By comparing

our semantic-mapping approach (with belief space reasoning) to our previous method

(without any belief space reasoning) on this corpus, we will directly measure the

benefit of reasoning in belief space.

We focus here on evaluating the performance of our approach to learning policies

in belief space. To isolate this from the other components in the system, we again

use a previously collected map of the environment, and “reveal” it to the robot

as it travels in simulation (while obeying all line-of-sight and motion constraints).

110

6. Reasoning and Learning in Belief Space

Additionally, we approximate the semantic map sampling with a Gaussian distribution

over landmark locations (with a mean and covariance per linguistic relation term,

learned from data). We also approximate the belief likelihood update (re-weighting

of particles) by invalidating hypothesized landmarks within the robot’s line of sight.

These approximations are once again an idealization of the entire system presented in

Chapter 5 (especially with regard to perception), but in our experience the behavior

is not significantly different from those on the integrated robot results we will present

in Chapter 7.

Our methods here are almost identical to the results presented in Section 4.5. For

the results that follow, we used N = 15 iterations of DAgger, and a learning rate

for the weight update rule with γ = 0.7. The belief space policy uses K = 2 moments

(the mean and variance) of the action feature distribution.

Comparison on extended corpus with complex directions

On the existing set of directions, the belief space approach improves the performance

slightly. However, these directions were all relatively simple: they did not contain any

additional navigation information. To evaluate the improvements of our belief space

policy approach on directions that include the navigation landmark and relation fields

introduced in Section 5.1, we generated an additional 15 natural language directions

that contain information about the location of the goal landmark, especially in

cases where this landmark could be ambiguous (e.g., there are many doors in the

environment). These directions would (by design) be difficult to follow without using

this additional navigation information.

For instance, the direction “go to the door after the water fountain, turn right, go

straight to the cabinet,” shown in Figure 6.3, contains information about the correct

door to use (the one after the water fountain). Our semantic map inference approach

can make use of this information when it generates a distribution of hypothesized

maps: once the robot detects a water fountain the policy can generate possible

door samples behind it. Utilizing this navigation information is especially important

because there are many doors in the same hallway.

We now present experiments evaluating our approach to following directions

(with belief space reasoning) on this extended corpus of direction. We begin with a

111

6. Reasoning and Learning in Belief Space

Water
Fountains

Door

Cabinet

Start

Figure 6.3: Ground truth path for the direction “go to the door after the water
fountain, turn right, go straight to the cabinet.” The direction contains the additional
information about the location of the correct door (it is after the water fountain).
Our belief space policy will leverage this additional information to guide its decisions,
which is especially important because there are many doors in the same hallway.

qualitative detailed sequence of decisions for the example direction shown in Figure 6.3.

The decisions of the policy in this case provide a good intuition for why this approach

yields improved performance when following directions in unknown environments. We

also compare this with the results (on the same direction) of our previous approach

that does not generate possible maps, use a belief space policy, or use the navigation

information.

We then look at quantitative aggregate results across many cross-validation trials,

where we train the policy on some directions and apply it to the remaining held out

directions. We will present results measuring both the average ending distance error

and the success rate (for different distance thresholds). In both settings, the results

of these experiments show that our belief space approach can successfully make use

of the additional navigation information provided by the direction. This significantly

reduces the average ending distance error, and improves the success rate.

Detailed validation sequence

We first look at the policy’s sequence of decisions for one (held out) validation

direction: “go to the door after the water fountain, turn right, go straight to the

112

6. Reasoning and Learning in Belief Space

(a) Starting at the blue square, the seman-
tic map distribution contains hypothe-
ses for the location of the door.

Water
Fountain

(b) The simulated robot senses a water
fountain, and generates more hypoth-
esized maps with a more localized dis-
tribution over the location of the door
(note that it still has not seen the door).

(c) As the simulated robot moves in the en-
vironment, it discards door hypotheses
that do not match its sensor observa-
tions (i.e. those that should have been
detected). The robot continues looking
for the door.

Door

(d) The robot perceives the door mentioned
in the direction, so the policy discards
all other door hypotheses. The policy
will reach the door and transition to the
second SDC (“turn right”, not shown
in this sequence).

(e) The third SDC (“go straight to the cab-
inet”) contains some information about
the location of the cabinet (it is straight
ahead). The policy generates a land-
mark distribution for its location.

Cabinet

(f) After the robot detects the cabinet, the
policy continues going straight towards
it, and here we show were it declared it
was done following the direction (stop
action).

Figure 6.4: Sequence of policy decisions for the direction “go to the door after the
water fountain, turn right, go straight to the cabinet.” We show color-coded actions
and landmark hypotheses per SDC, and show in black the previously visited nodes.

113

6. Reasoning and Learning in Belief Space

cabinet.” The policy’s semantic map distribution begins with very little knowledge,

since the command only specifies the location of the door relative to a (still unknown)

water fountain. This is reflected in the large distribution of hypothesized locations

for the door (Figure 6.4a). The policy decides to go straight, exploring to find the

door. As it moves, it also updates the semantic map distribution by invalidating

samples that would have been visible from the robot’s current location (since those

hypotheses were incorrect). Once the robot detects a water fountain (Figure 6.4b),

it generates more samples for the possible location of the door (using the relation

“after”). This step highlights the use of the navigation information (namely, the door

is after the water fountain) contained in the natural language instruction. By doing

so, the policy now has much more information than it did previously to use when

making decisions, and can look for the door in a more informed manner.

The policy continues going straight (ignoring a right turn into the bathroom),

further updating the door landmark distribution (Figure 6.4c). When it finally detects

the door (Figure 6.4d), it discards other hypotheses and finishes by going towards it.

It then transitions to the second SDC (using the stop action), and begins executing the

second SDC: “turn right”. After two actions (not show in the figure), the policy again

transitions to the next SDC: “go straight to the cabinet”. Because the command does

contain some implicit information about the location of the landmark (the cabinet is

straight ahead), the semantic map distribution is more informative at the beginning

(compare Figure 6.4e and Figure 6.4a). The learned belief space policy utilizes these

samples to go straight until it sees the actual cabinet, then selects the stop action

once it reaches the cabinet. Because there are no more SDCs, the policy has finished

with the entire direction, with a 0 m ending distance.

The policy was successful in following this direction because it utilized all the

information available in the language. First, it leveraged the direction’s implicit infor-

mation about the world, effectively using language as a sensor to build a map beyond

the robot’s sensor range. Second, the policy used the direction’s explicit information

about the task to take a sequence of actions towards the goal. This combination of

generating (and updating) a distribution of possible maps, then planning a sequence

of belief space actions using a learned policy enables our approach to follow complex

natural language directions through unstructured unknown environments.

For comparison, the result of the basic policy (without hypothesizing maps or

114

6. Reasoning and Learning in Belief Space

(a) The simulated robot once again starts at
the blue square. The policy immediately
uses the door right in front of the robot
for the SDC “go to the door,” without
looking for any water fountains.

(b) Without using the navigation informa-
tion, the policy decides to stop too early
(note there are two doors in the same hall-
way). It then transitions to the second
SDC, “turn right.”

(c) When a right turn is available, the policy
decides to take it even though it leads
into a bathroom.

Toilet

(d) The policy is now on the third SDC (“go
straight to the cabinet”). The toilet ob-
ject in the environment is semantically
likely to co-occur with a “cabinet,” so the
policy stops following the direction here.

Figure 6.5: Sequence of policy decisions without using navigational information for
the same direction as above. Because the policy does not use the implicit information
about the (correct) door’s location, it stop too early on the first SDC (at an incorrect
door). This causes the error to compound when it turns right into the bathroom. The
color-coding is the same as in Figure 6.4, but in this case the policy does not generate
a distribution of semantic maps from the language, nor does it use the additional
navigation information contained in the language.

using the additional information in the direction) on the same direction is illustrated

in Figure 6.5. In this case the policy turns right too early on the first SDC, because

it did not utilize the additional information about the location of the door (the

direction is ambiguous without this). The policy then turns right into a bathroom,

and completes following the direction there (14.7 m from the correct destination).

115

6. Reasoning and Learning in Belief Space

Cross-validation results

We now evaluate the policy quantitatively over many repeated cross-validation trials

on the extended corpus, by training a policy on about half of the directions, and

testing it on the remaining held out directions. As with our previous approach, we will

measure for each trial the average ending distance across the held out directions, and

the success rate for various distance thresholds. These results are on the combined

set of 55 directions (40 basic directions and 15 complex directions), treated as one

large corpus (we did not sample the complex directions separately). We ran 200 trials

of cross-validation, using 28 directions for training and 27 for testing.

As expected, the results show that our belief space policy performs significantly

better than the previous approach on this corpus. As with the single validation

example in Figure 6.4, in this setting the semantic infers a distribution of maps

consistent with the additional information contained in the language. For instance,

the average ending distance error of the test directions across all cross-validation trials,

shown in Figure 6.6, demonstrate that reasoning about a distribution of landmarks

(and planning in the resulting belief space) reduces the average ending distance error

significantly. By hypothesizing an initial distribution of landmarks based on the

command and then utilizing any navigation landmarks in the command (after they

are detected), the policy is able to improve its decision making. Similarly, the success

rate when inferring a distribution of landmarks improves significantly. The results for

the average success rate across all trials is better with belief space reasoning than

without (Figure 6.7). This is true for every possible distance threshold (i.e., changing

how far away the robot must be from the true goal to declare the trial a success).

6.4 Chapter Summary

This chapter extended our sequential decision making approach to following natural

language directions from Chapter 3 to utilize the additional information provided by

the semantic map inference (namely, a distribution of possible maps). The samples

(particles) from this map distribution contain the possible location of landmarks

inferred from the natural language command and robot’s sensor stream. While this

information can guide the robot’s decision making, the robot must now reason in the

116

6. Reasoning and Learning in Belief Space

With Without
0

5

10

15

0.88

2.86

5.54

2.26

7.66

12.93

Belief space reasoning

E
n
d
in

g
d
is

ta
n
ce

er
ro

r
(m

)

Cross-validation performance on ambiguous corpus

Figure 6.6: Reasoning about the distribution of landmarks (with belief space reasoning)
reduces the average ending distance error across 200 cross-validation trials, compared
to without belief space reasoning. Lower error is better.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Success Threshold Distance (m)

S
u
cc

es
s

ra
te

With belief space
Without belief space

Figure 6.7: Reasoning about landmark distributions improves the average success
rate of the system across all distance thresholds. Each curve represents the average
success rate across 200 cross-validation trials for any given distance threshold. Higher
success rate is better.

117

6. Reasoning and Learning in Belief Space

belief space of possible environments.

Our framework for following directions remains unchanged: a policy will enumerate

a set of feasible actions from its current state, evaluate the cost of each action, and

execute on the robot the one with the lowest cost. This will generate a new observation

of the world, and update its map representation. The main difference is that the

world representation is now a distribution over the valid semantic maps (the combined

metric, topological, and semantic representation of the world). This map distribution

contains hypotheses of landmark locations that are inferred based on observations

from the robot’s sensor and the natural language command, effectively treating

language as another sensor.

The challenge remained to effectively use this additional information to successfully

inform the policy. We formulated a belief space policy that computes the cost of

each action using a kernel distribution embedding of the action feature distribution

(induced by a distribution over possible landmarks). Our belief space planning

problem is distinct from others in that our primary objective is to follow the direction,

not take actions that optimize some metric on the belief (e.g., reducing uncertainty).

The policy formulation enables us to do this efficiently: the additional cost is simply

computing more features (determined by the number of belief samples).

We introduced a method to train the policy using a simple extension of our

imitation learning formulation from Chapter 4. The resulting policy encapsulate

the expert’s knowledge of the uncertainty in the environment, and leads to effective

decision making in a distribution of maps. We showed that this approach is effective

at following natural language directions, outperforming our prior approach when the

directions are complex. These complex directions contain references to navigation

landmarks, intended to resolve between multiple possibilities (for example, “go to

the door across from the whiteboard”). Our learned belief space policy resulted

in significantly lower error in the average ending distance, and significantly higher

success rates.

The next two chapters will demonstrate this approach on several integrated robot

platforms. As we will show in the next chapter, our approach of inferring maps

for following natural language directions leads to performance that approaches the

performance of the robot operating with a completely known map.

118

Chapter 7

Integrated Demonstrations on

Autonomous Indoor Robots

I urge you to please notice when you are

happy, and exclaim or murmur or think at

some point, ‘If this isn’t nice, I don’t know

what is.’

Kurt Vonnegut

We now present results of applying our approach of using a policy to follow natural

language directions through unknown environments on three robots that operate in

unstructured indoor environments:

• CoBot, an autonomous robot developed at CMU that performs service tasks

and interacts with people in an indoor office environment [125, 164].

• The Husky, an all-terrain mobile robot that operates indoor and outdoor.

This robot was equipped with a sensor package and autonomous navigation

capabilities by a consortium as part of the RCTA project [111].

• The MIT intelligent wheelchair, an autonomous voice-commandable

wheelchair developed to assist users in a variety of tasks [55].

Each of these platforms (shown in Figure 7.1) has different sensor configurations,

low-level planners, and ways of mapping the world. However, as we will show, our

119

7. Integrated Demonstrations on Autonomous Indoor Robots

(a) CoBot

(b) The Husky

(c) Autonomous Wheelchair

Figure 7.1: Our approach to following natural language directions generalizes across
a wide variety of platforms and environments, shown here. CoBot (7.1a) operates
primarily in indoor office environments, the Husky (7.1b) operates primarily in
larger open areas, and the autonomous wheelchair (7.1c) operates in both types of
environments.

120

7. Integrated Demonstrations on Autonomous Indoor Robots

approach is general and can therefore apply across this wide variety of robots and

environments.

In most cases we present anecdotal results on each robot, testing the complete

integrated system on a small number of runs for different commands. We will also

present more extensive results of the same integrated system running in simulation.

For more comprehensive results evaluating our approach to learning policies (isolated

from the entire integrated system), see the results in Chapters 4 and 6.

We begin in Section 7.1 with a generalization of our approach from Chapters 3

and 4 to an entirely novel environment by applying our learned policy (trained on

a corpus of directions in the MIT Stata center) to the CoBot robot operating in

CMU’s Gates building, an environment the policy had never seen. These experiments

are joint work with Thomas Kollar. In Section 7.2, we then apply our approach to

inferring semantic maps (presented in Chapter 5) on the Husky, commanding the

robot with relatively simple natural language directions. We show that inferring a

distribution of maps improves performance. In Section 7.3, we then combine this

semantic map inference approach with a learned belief space policy (introduced in

Chapter 6), where the commands are more complex and contain ambiguity, on the

autonomous wheelchair. The results presented in Sections 7.2 and 7.3 are adapted

from two prior publications (Duvallet et al. [42], Hemachandra et al. [57]); these are

the result of joint work with Sachithra Hemachandra, Thomas Howard, and Matthew

Walter.

In addition to showing successful implementations of our approach on three differ-

ent mobile robots, the results of our experiments support the following conclusions:

• Real robots can follow natural language directions through unknown environ-

ments by framing the problem as sequential decision making under uncertainty.

• Policies trained using imitation learning encapsulate the uncertainty present

in the unknown parts of the environment and effectively capture the expert’s

knowledge.

• Our feature representation enables generalization to new commands in environ-

ments the robot has never encountered.

• Inferring a distribution of maps (using the information implicitly specified in

the language) improves the performance of the robot, approaching the level of

121

7. Integrated Demonstrations on Autonomous Indoor Robots

a robot operating with a fully-known map.

• Our integrated approach can recover from false initial assumptions (e.g., in

cases of multiple possibilities) to successfully follow ambiguous directions.

These findings support the thesis statement introduced in Chapter 1: following natural

language directions through unstructured unknown environments can be formulated

as sequential decision making under uncertainty, furthermore, language can be used as

a sensor to infer maps that improve the ability of the robot to follow directions. These

experiments are one step towards demonstrating effective human-robot coordination

in shared teams that communicate using natural language.

122

7. Integrated Demonstrations on Autonomous Indoor Robots

7.1 Generalization to Novel Environments on

CoBot

The first integrated robot experiment we present demonstrates the ability of our

policy to generalize to a novel environment. More specifically, we train the policy

on directions in one building, and evaluate it on directions in a different building.

This demonstrates the ability of the policy to make a sequence of decisions in an

unknown environment it has never observed. In this section we evaluate the basic

policy formulation (without belief space reasoning) introduced in Chapters 3 and 4:

we provide the robot with a natural language command and no map of the world,

then evaluate its actions.

Methods

We demonstrate our ability to generalize to novel environments using CoBot, a

research platform developed at CMU by Veloso et al. [164]. This robot is a mobile

indoor service robot that can be used for a variety of tasks: picking up and delivering

packages, escorting visitors to meetings, and remote telepresence. Users can request

and schedule tasks via a website. A team of several CoBot robots has been in

operation since 2009 in multiple buildings on CMU’s campus: Wean Hall, Gates Hall,

and Newell-Simon Hall, and these robots have collectively traveled over 1000 km [16].

Our approach to handling mapping and perception on this robot is similar to

the results presented in Section 4.5: we use a fully-annotated semantic map that an

external process incrementally “reveals” to the robot as it travels through the world

(obeying visibility constraints). This is possible since CoBot normally operates in a

fully-known map that includes a metric map of the building, a topological graph of

the hallways, and the location of semantically annotated landmarks (such as elevators,

kitchens, printers, etc.). Our focus in this section is on the problem of generalizing to

different environments the policy has never before seen.

We trained the policy using 30 directions through one floor of MIT’s Stata center

(a subset of the corpus for the results in Section 4.5). After training, the only

We gratefully acknowledge Joydeep Biswas, Brian Coltin, and Manuela Veloso for their help
running the experiments presented on CoBot.

123

7. Integrated Demonstrations on Autonomous Indoor Robots

Figure 7.2: Floor plan of the Gates-Hillman Center at CMU.

information we retained were the learned weights in Equation (3.10). These weights

specify how each feature (for a state-action pair) affects the policy’s cost function.

We then commanded CoBot with a variety of natural language commands in CMU’s

Gates Hall (shown in Figure 7.2). Note that the policy has never seen a single

demonstration from this new environment, all of its training data came from a corpus

of directions through one floor of a building at MIT. While these are both indoor

office-like environments, the specific environment structure is different, the semantic

objects are in different configurations (and have different shapes), and even the units

used in the map are different. We computed features for actions in this environment

using the same code.

Results

We only present qualitative results of following natural language directions in a

novel environment using CoBot. This is because we ran a relatively small number of

commands, and the language in the commands was also quite simple. In addition to

serving as a real world validation of our approach, these results demonstrate a very

important finding of our research: the learned policy can generalize to environments

it has never encountered before.

A trace of CoBot correctly following the natural language direction “Go past

124

7. Integrated Demonstrations on Autonomous Indoor Robots

Start

elevator kitchen

printer

Figure 7.3: Trace of successful CoBot run for following the command “go towards
the elevator, turn left towards the kitchen, and go towards the printer.” We show
the complete robot’s path through the world (color-coded by SDC), as well as the
landmarks the policy used to follow the direction. Note that we show the entire
environment, but CoBot only had access to the parts of the environment it had visited
(a partial map).

the elevator, turn left towards the kitchen, and go towards the printer” is shown in

Figure 7.3. After it detects the elevator object, the robot continues taking a sequence

of actions until it determines it is “past” the elevator. The robot then transitions

to the second SDC, and even though it cannot yet see the kitchen or a left turn it

continues down the same hallway. CoBot sees the left turn and the kitchen when it

arrives in a common area, and correctly takes a left turn. After taking actions for

the third SDC, the policy declares when it believes it has reached the destination

and stops at the printer.

For the command “Go past the bathroom, turn left, and turn left to the elevator”

(shown in Figure 7.4), CoBot initially correctly follows the first SDC and transitions at

the appropriate time. However, the policy chooses to continue past the first left turn

(incorrectly). When CoBot reaches the end of the hallway, the policy determines it

has made a mistake and the robot backtracks to the correct hallway. In this situation,

the policy’s cost for the stop action was higher than the cost of backtracking to

the hallway. After traveling down the hallway, it correctly calls the stop action,

125

7. Integrated Demonstrations on Autonomous Indoor Robots

bathroom

elevator

backtracking

Start

Figure 7.4: Trace of a run where CoBot made an error and backtracked. The command
was “go past the bathroom, turn left, and turn left to the elevator”. In this case,
CoBot did not turn left correctly, but realized it made a mistake when it reached a
dead end. It then backtracked and continued along the rest of the direction correctly.

transitions to the final SDC (turning left to the elevator), and reaches the elevator

(overshooting slightly).

Discussion

Using CoBot, we were able to demonstrate the generalizability of our approach to

entirely novel environments (i.e., one the robot policy had never seen). The ability to

generalize to novel environments is especially important for robotics because training

policies on each environment separately is costly and in some cases may be infeasible.

Additionally, we demonstrated that framing direction following as sequential decision

making can enable real robots to follow natural language directions through unknown

environments, which supports our thesis statement. This robot experiment validates

our approach to training a policy in an unknown environment, which enables the

policy to reason about the unknown pats of the environment. We also demonstrated

an example of the robot making a mistake and recovering, which was possible because

the policy had demonstrations of both successes (what the expert did) and failures

(what the expert would have done to recover) from the training data.

126

7. Integrated Demonstrations on Autonomous Indoor Robots

These anecdotal experiments are one step towards showing that our approach

generalizes well across different environments. Combined with the fact that our

approach does not require a map of the environment ahead of time, this holds

the promise of enabling robots to understand natural language commands in new

environments without requiring time-consuming environment-dependent training. The

ability for robots to operate successfully in novel unknown environments will improve

their ability to collaborate with people and be effective partners in human-robot

teams.

127

7. Integrated Demonstrations on Autonomous Indoor Robots

7.2 Demonstration of Semantic Map Inference

on the Husky Robot

The previous experiments on CoBot demonstrated our sequential decision making

formulation on a robot in a novel unknown environment. We now apply the language-

driven semantic map inference approach presented in Chapter 5 to the Husky robot

platform, and demonstrate that inferring maps from a natural language direction

improves the performance of the robot when it is following the direction. Consider

the environment in Figure 7.5, showing both the operator’s and Husky’s viewpoints.

If the operator (who can clearly see both the cone and the hydrant) instructs the

robot (that can only sense a cone) to “drive to the hydrant behind the cone,” our

map inference approach will leverage the information in the language (namely, there

is a hydrant and it is located behind the cone) to infer a suitable distribution of

environments. The policy will then use this inferred map distribution to make a

sequence of belief space decisions.

Methods

The following experiments measure the ability of the robot to execute the intended

command. We will compare our approach with an inferred map distribution (using

information contained in the language) against a baseline of using a complete map of

the environment (acquired by manually driving the robot around the environment).

The Husky is running the Semantic Map inference framework described in Chapter 5,

with a graphical user interface to input an unstructured natural language command.

The robot is equipped with an Adonis camera, and in these experiments we use the

AprilTag fiducials [64, 112] for object detection and localization. This once again

simplifies the perception problem while observing all physical constraints (namely,

sensing range and line of sight). In these first experiments, the robot’s belief space

policy cost function is hand-tuned to minimize the expected distance to the goal

landmark distribution. In Section 7.3 we will use a belief space policy learned from

demonstrations.

The following experiments on the Husky were possible because of help from the greatest Husky
wranglers of all time, Jean Oh and Bob Dean.

128

7. Integrated Demonstrations on Autonomous Indoor Robots

(a) Operator view (b) Robot view

Figure 7.5: Differing viewpoints lead to mismatched world representations. The
operator can clearly see both the hydrant and the cone, but the robot can only see
the latter. Our approach leverages the information contained in a natural language
command to narrow this gap by inferring possible locations of the hydrant.

In this experiment we performed 24 trials by commanding the robot to navigate

to the (initially unknown) hydrant. We varied both the starting environment model

(known vs. unknown) and the command (with and without a relation): the two

natural language commands were “go to the hydrant behind the cone” and “go to

the hydrant.” Each condition (starting map and command) consisted of six trials.

This allowed us to measure the ability of the robot to use the additional information

from the spatial relation in the command, as well as compare our approach to that

of knowing the complete map ahead of time. We consider a trial to be a success if

the robot stops within 1.5 m of the hydrant, and a failure if the robot stops or the

operator must take over (e.g., because of some unsafe action).

Results

When the robot had access to a complete map of the environment, it successfully

executed 100 % of the commands (whether or not the language contained information

about the hydrant’s location). When the robot started with an unknown map and the

direction included the spatial relation (“behind the cone”), our approach successfully

129

7. Integrated Demonstrations on Autonomous Indoor Robots

Table 7.1: Experimental results on the Husky for the command “go to the
hydrant behind the cone.” Both conditions (known and unknown map)
represent six unique trials. We report mean time and distance (with 95 %
confidence intervals) and success rates for the different conditions. As we can
see, our approach of inferring a map distribution and using a belief space
policy yields performance in unknown environments that approaches having
a complete map a priori.

Map Distance (m) Time (sec) Success (%)

Known 8.4± 1.3 26.4± 4.2 100.0

Unknown 8.1± 0.6 34.0± 18.6 83.3

executed the command 83.3 % of the time, even though the goal object (the hydrant)

was not initially visible or known in advance (Table 7.1). When the robot was given

a command without any spatial relation (“go to the hydrant”) in an unknown map,

the inferred map distribution was not sufficient to help the robot find the hydrant

(0 % success rate). (A better uninformed search behavior could have helped the robot

eventually find the hydrant, but we did not implement this.)

As we expected, the results indicate that inferring a map distribution helps the

robot follow the command correctly. Additionally, the distance traveled by the robot

using an inferred map distribution is similar to the distance traveled when the robot

has access to a complete world map. The main difference was in the time taken by

the robot to follow the direction (about 29 % more for the inferred maps than the

fully-known map), due to the time required to integrate new sensor measurements,

update the distribution of inferred maps, and evaluate the cost of possible actions.

The approach overview diagram (Figure 5.2) illustrates data collected during one run

on the Husky for the command “go to the hydrant behind the cone,” where the robot

starts with an unknown map but can observe the cone.

Discussion

These experiments suggest it is possible to achieve a level of performance in an

unknown environment that is similar to knowing the map a priori by exploiting the

information implicitly contained in the command. Using the user’s natural language

130

7. Integrated Demonstrations on Autonomous Indoor Robots

instruction, we can infer the relationship between objects that may not be initially

observable without having to consider those annotations as a separate utterance. By

learning and reasoning about a distribution over the possible maps and behaviors, we

can solve for a policy that explicitly takes into account the uncertainty in the map.

The next experiments on the autonomous wheelchair will integrate this map inference

approach with a learned belief space policy, and demonstrate this approach on more

complex environments and directions.

131

7. Integrated Demonstrations on Autonomous Indoor Robots

7.3 Demonstration of Belief Space Policy on the

Autonomous Wheelchair

The previous experiments on the Husky platform demonstrated the effectiveness of

our approach to following natural language directions in unknown environments by

hypothesizing the environment beyond the robot’s sensor range, using the information

contained in the language. As we discussed in Chapter 6, the policy must now reason

in the belief space of possible maps. We now present results of our approach in more

complex environments (and with more intricate commands) that highlight the ability

of the policy to reason about a distribution of landmarks, deal with ambiguity, and

recover from false assumptions.

We ran these experiments on a voice-commandable wheelchair located at MIT,

shown in Figure 7.1c. This robot has three forward-facing cameras with a collective

field-of-view of 120 degrees, and both forward- and rear- facing LIDARs. We again

used AprilTag fiducials [64, 112] to detect and estimate the relative pose of objects in

the environment, subject to self-imposed sensing range restrictions. The use of this

additional platform further demonstrates the applicability of our algorithm to various

mobile robots with different platform configurations, underlying motion planners, and

sensor configurations. We begin by presenting experiments that require reasoning

about objects in an open environment, extending those from Section 7.2. We then

demonstrate our approach on directions through an office environment that require

reasoning about regions, such as hallways and kitchens.

Reasoning about objects in an open environment

The first set of experiments on the wheelchair extend the ones from the Husky by

using more complex environments and commands. All the commands direct the

robot to an initially-unknown landmark (in this case a hydrant), and involve different

spatial relationships to cones (“behind,” “nearest,”), or no relation at all (i.e., “go to

the hydrant”). Some environments were ambiguous: there were multiple cones the

hydrant could be behind, or there were multiple hydrants and the robot had to select

the one “nearest” to the cone.

In each experiment, a human operator issues one of the following natural language

132

7. Integrated Demonstrations on Autonomous Indoor Robots

Table 7.2: Experimental results on the wheelchair in an open environment,
showing the mean and standard deviation across trials for various conditions
(ten runs for our approach and one run with a known map). Each row is
a different world configuration (Hydrant, Cone), sensing range, and spatial
relation in the natural language command. One of the hydrants was the goal
each time.

World
Sensing

Range (m)

Spatial

Relation

Success Rate (%) Distance (m)

Known Ours Known Ours

1H, 1C 2.5 null 100 100 4.7 16.6± 7.2

1H, 1C 2.5 “behind” 100 100 4.7 9.9± 3.4

1H, 2C 3.0 “behind” 100 100 4.6 7.6± 2.1

2H, 1C 2.5 “behind” 100 80 5.3 6.0± 1.4

2H, 1C 4.0 “nearest” 100 100 4.1 5.0± 0.4

2H, 1C 3.0 “nearest” 100 50 6.3 7.1± 0.6

commands to the robot: “go to the hydrant,” “go to the hydrant behind the cone,”

or “go to the hydrant nearest to the cone.” For each of these commands, we consider

different environments by varying the number and position of the cones and hydrants

(the room was otherwise free of obstacles), and by changing the robot’s sensing

range. For each configuration of the environment, command, and sensing range, we

performed ten trials with our algorithm. For a ground truth baseline, we performed

an additional trial with a completely known world model. We consider a run to be

successful if the robot’s final destination is within 1.5 m of the intended goal.

As in our simpler experiments on the Husky, our results on the Wheelchair (shown

in Table 7.2) demonstrate the utility of utilizing the extra information contained in

the language command to infer a distribution of maps, and using this distribution as

input to a belief space policy. We find that our algorithm is able to take advantage

of available relations (“go to the hydrant behind the cone”) to yield behaviors closer

to that of ground truth, compared to the command that does not provide a relation

(“go to the hydrant”). The distance traveled in the first two rows of Table 7.2 shows

a sharp decrease when using the additional information in the language.

When there is ambiguity in the command, for example the command “go to the

133

7. Integrated Demonstrations on Autonomous Indoor Robots

(a) t = 0 (b) t = 4 (c) t = 8

Figure 7.6: Visualization of the landmark distribution over time for the command
“go to the hydrant behind the cone,” where the triangle denotes the robot, squares
denote observed cones, and circles denote hydrants that are either sampled (empty)
and observed (filled). Figure 7.6a: The robot starts off observing both cones, and
hypothesizes possible hydrants that are consistent with the command. Figure 7.6b:
the robot moves towards the left cluster, but after not observing the hydrant, the
map distribution peaks at the right cluster. Figure 7.6c: The robot then moves right
and observes the actual hydrant. This visualization is from a simulation run (for
illustration), but the robot experiments result in very similar distributions.

hydrant behind the cone” in a world with two cones in the environment (third row of

Table 7.2), the robot does not initially know which cone the hydrant is behind. In

this case the robot generates a bi-modal distribution of maps: some of the semantic

maps contain a hydrant behind the first cone, others contain a hydrant behind the

second cone. This is illustrated in Figure 7.6, where the policy begins with roughly

equal probability mass behind each of the two cones. When the robot travels behind

a cone and does not see a hydrant, the semantic map distribution down-weights those

particles. The policy uses this updated map distribution to select a new action, and

visits the area behind the other cone. After the robot detects the hydrant, the map

distribution converges to the true environment and the policy eventually declares

it is done following the direction. This explains our result on the robot: the robot

successfully recovers from any false assumptions (100 % success rate), but travels

slightly longer than the fully-known map case on average (7.64 m vs 4.58 m). This is

because in some of the trials, the robot goes behind the incorrect cone and recovers.

When the environment contained two hydrants (last three rows of Table 7.2),

134

7. Integrated Demonstrations on Autonomous Indoor Robots

the robot trials exhibited an interesting failure mode that we did not expect. If the

robot detects one of the two hydrants before a cone, the semantic map distribution

then hypothesizes the existence of cones around the hydrant (using the relation in

the command). This leads to a behavior distribution peaked around the detected

hydrant, and the policy goes towards it without looking for the possibility of another

hydrant in the environment. This effect was most pronounced with shorter sensing

ranges (e.g., a 3 m sensing range for the command “go to the hydrant nearest to the

cone” resulted in the robot reaching the goal in only half of the trials compared to

a 4 m sensing range). Adding a simple behavior that checks for the existence of all

necessary landmarks for the direction (both the cone and hydrant) could fix this

behavior.

These results demonstrate the usefulness of utilizing all of the information con-

tained in the instruction, such as the relation between various landmarks in the

environment that can be helpful during navigation. We now describe experiments

that go beyond simple landmark-based commands and describe real world navigation

commands through indoor office environments that involve reasoning about previously

unknown regions such as kitchens and hallways.

Reasoning about regions in an office environment

In these experiments we go beyond object-based directions to command the robot

with directions that refer to human-centric regions in an indoor office environment

(for example, “go to the kitchen that is down the hallway”). This requires the ability

to detect and semantically label regions in the environment (e.g., kitchens, hallways),

reasoning about spatial relationships between them when hypothesizing possible

semantic maps, and following more complex natural language directions that include

more verbs and relationships to the goal region (e.g., “past the kitchen”). In this

experiment the wheelchair is operating on a floor of MIT’s Stata Center containing

several hallways, offices, lab spaces, and a kitchen on the same floor. We used the

automatic region segmentation presented by Hemachandra et al. [56], but placed

AprilTag fiducials [112] to identify the region type once the robot enters it. The

wheelchair starts with no map of the environment, and we directed it to execute the

instruction “go to the kitchen that is down the hallway.”

135

7. Integrated Demonstrations on Autonomous Indoor Robots

Table 7.3: Experimental results on the MIT autonomous wheelchair in an
office environment. The command was “go to the kitchen that is down
the hallway.” This table shows the mean and standard deviation of the
distance traveled and time to reach the goal for each experimental condition:
known map (the robot starts with a complete map of the environment),
with language (the robot uses the implicit information in the command),
and no language (the robot does not use the implicit information). Again,
we see that utilizing the information in the language (our approach, With
Language) enables the robot to travel about the same distance as the known
map case.

Algorithm Distance (m) Time (s)

Known Map 13.1± 0.7 62.5± 16.6

With Language 12.6± 0.6 122.1± 32.5

No Language 24.9± 13.6 210.4± 97.7

We compare our framework of inferring semantic maps using the natural language

command against two other methods. One uses a known map of the environment in

order to infer the actions consistent with the route direction. The second method

assumes no prior knowledge of the environment (as with ours) but does not use

language to modify the map (it only searches for the goal). We performed six runs

with our algorithm, three runs with the known map method, and five with the method

that does not use language, all of which were successful.

The results of this experiment (measuring the distance traveled and total execution

time) once again show that our approach of planning in an inferred map distribution

enables performance that is close to operating in a fully-know map (Table 7.3). The

robot traveled about the same amount in our approach and when it had access to

a completely known map a priori, because it leveraged the knowledge about the

location of the kitchen contained in the natural language instruction. The semantic

map distribution reflected this knowledge by updating the hypothesized locations

of possible kitchens in the map particles once it detected the hallway (we show the

semantic map evolution over time in Figure 7.7). The robot took a longer time to

execute the command because it had to take a sequence of small actions, updating its

map distribution and solving the belief space policy after each action. By comparison,

136

7. Integrated Demonstrations on Autonomous Indoor Robots

the known map condition traveled directly to the kitchen in a single action. The full

map of the environment, shown in Figure 7.8, was collected by driving the robot in

the environment manually. The approach that did not use language to update its

map distribution explored the environment more or less randomly until it located the

kitchen; as expected this resulted in poor performance according to both metrics.

Discussion

These experiments on the autonomous wheelchair along with those on the Husky

demonstrate the effectiveness of our approach of inferring a map distribution (using

the information contained in the language) and then using a belief space policy to

take a sequence of actions towards the goal. As with the rest of our work, this

relies on a formulation of natural language direction following as sequential decision

making. Effectively, we use language as a sensor that can hypothesize the parts of

the environment that are beyond the robot’s sensor range. The main difference is

that the policy must reason in the belief space of possible maps, since we infer a

distribution of possible environments. As the robot gains more information about

the world, it updates the map distribution before taking its next action. We have

shown that our approach results in performance in unknown environments that is

close to the performance of the robot operating in a fully-known map, simply by

leveraging the additional information that is implicitly contained in the language.

In cases where the language is ambiguous, we showed that our approach is able to

recover from initial false assumptions to follow the direction successfully.

This ability to reason about the parts of the environment that have not yet been

observed but are mentioned in a natural language direction is one important step

towards seamless human-robot interaction with lay users in environments that are

unknown to the robot. In addition, this explicit representation of the robot’s belief

(as a distribution of maps) could become a useful visualization tool by explicitly

representing the robot’s knowledge of the world in a human-understandable form.

137

7. Integrated Demonstrations on Autonomous Indoor Robots

(a) t = 3

(b) t = 4

(c) t = 8

Figure 7.7: Visualization the evolution of semantic maps for one run on the robot,
for the command “go to the kitchen that is down the hallway.” Sampled regions
are drawn as small circles and visited regions are shown with the area filled in (lab:
green, hallway: orange, kitchen: blue). The robot first samples possible locations of
the kitchen and moves towards them (7.7a), then observes the hallway and refines its
estimate using the “down” relation provided by the user (7.7b). Finally, the robot
reaches the actual kitchen (7.7c) and declares it has finished following the direction.
For comparison the ground truth environment is shown in Figure 7.8.

138

7. Integrated Demonstrations on Autonomous Indoor Robots

Figure 7.8: Full map of environment collected by driving the robot manually around
the environment. The regions are lab space (blue), hallway (yellow), kitchen (green),
and elevator lobby (red).

139

7. Integrated Demonstrations on Autonomous Indoor Robots

Table 7.4: Direction following performance in simulation using belief space policy:
mean and standard deviation across trials for various conditions. Each row is a
different world configuration (Hydrant, Cone), sensing range, and spatial relation
in the natural language command. One of the hydrants was the goal each time.

World
Sensing

Range (m)

Spatial

Relation

Success Rate (%) Distance (m)

Known Ours Known Ours

1H, 1C 3.0 null 100.0 93.9 8.8± 1.7 16.8± 7.9

1H, 1C 3.0 “behind” 100.0 98.3 8.8± 1.7 13.4± 7.0

1H, 2C 3.0 null 100.0 100.0 11.2± 1.4 32.5± 18.5

1H, 2C 3.0 “behind” 100.0 99.5 11.2± 1.4 40.0± 29.7

2H, 1C 3.0 null 100.0 54.4 10.5± 1.8 21.6± 10.3

2H, 1C 3.0 “behind” 100.0 67.4 10.4± 1.8 18.7± 10.2

2H, 1C 5.0 “nearest” 100.0 46.2 9.2± 1.5 12.1± 5.8

7.4 Simulated Belief Space Experiments with

Parameter Variation

Next, we evaluate the entire framework through an extended set of simulations in

order to understand how the performance varies with the environment configuration

and the command. We consider four environment templates, with different numbers

of hydrants and cones. For each configuration, we sample ten environments, each

with different object poses. For these environments, we issued three natural language

instructions “go to the hydrant,” “go to the hydrant behind the cone,” and “go to

the hydrant nearest to the cone.” We note that these commands were not part of

the corpus that we used to train the DCG model. Additionally, we considered six

different settings for the robot’s sensing range (2 m, 3 m, 5 m, 10 m, 15 m, and 20 m)

and performed approximately 100 simulations for each combination of environment,

command, and range. As a ground truth baseline, we performed ten runs of each

configuration with a completely known world model.

Our method’s success rate and distance traveled by the robot for these 100

simulation configurations is shown in Table 7.4. We considered a run to be successful

140

7. Integrated Demonstrations on Autonomous Indoor Robots

23 5 10 15 20
0

20

40

60

D
is

ta
n
ce

(m
)

(a) Command: “Go to the hydrant behind the
cone”.

23 5 10 15 20
0

20

40

60
no map
full map

(b) Command: “Go to the hydrant near-
est to the cone.”

23 5 10 15 20
0

50

100

Sensing range (m)

S
u
cc

es
s

(%
)

(c) Command: “Go to the hydrant behind the
cone”.

23 5 10 15 20
0

50

100

Sensing range (m)

no map

(d) Command: “Go to the hydrant nearest
to the cone.”

Figure 7.9: Distance traveled and success rate and for our approach in two simulated
scenarios, comparing our approach with no prior map against a completely known
prior map. With increasing sensor range, success rate improves and the distance
traveled approaches that of the full prior map.

141

7. Integrated Demonstrations on Autonomous Indoor Robots

Table 7.5: Direction following performance in simu-
lation using belief space policy (mean and standard
deviation across 10 trials), for the command “go
to the kitchen that is down the hallway.”

Algorithm Distance (m) Time (s)

Known Map 12.9 ± 0.1 18.3± 3.5

With Language 16.6 ± 6.9 82.8± 10.6

Without Language 25.3 ± 13.0 85.6± 17.8

if the planner stops within 1.5 m of the intended goal. Comparing against commands

that do not provide a relation (i.e., “go to the hydrant”), the results demonstrate

that our algorithm achieves greater success and yields more efficient paths by taking

advantage of relations in the command (i.e., “go to the hydrant behind the cone”).

This is apparent in environments consisting of a single figure (hydrant) as well as

more ambiguous environments that consist of two figures. Particularly telling is the

variation in performance as a result of different sensing range. Figure 7.9 shows how

success rate increases and distance traveled decreases as the robot’s sensing range

increases, quickly approaching the performance of the system when it begins with a

completely known map of the environment.

The same interesting failure case occurs in simulation when the robot is instructed

to “go to the hydrant nearest to the cone” in an environment with two hydrants. In

instances where the robot sees a hydrant first, it hypothesizes the location of the cone,

and then identifies the observed hydrants and hypothesized cones as being consistent

with the command. Since the robot never actually confirms the existence of the cone

in the real world, this results in the incorrect hydrant being labeled as the goal.

For the command “go to the kitchen that is down the hallway,” we again evaluated

our method in simulation. We carried out the same comparison in a simulated

world comprised of an office, hallway and a kitchen (with the robot starting off in

the office). We achieved similar results to our real world experiments; our method

achieved comparable results to the known map method while outperforming the

method without language (Table 7.5). Each trial represents ten runs.

142

7. Integrated Demonstrations on Autonomous Indoor Robots

7.5 Discussion

First, we demonstrated our approach of using a policy to follow natural language

directions through an unknown environments on CoBot, an autonomous platform

that has demonstrated impressive long-term deployments and interacts with users on

a regular basis. While these anecdotal experiments did not address many important

issues such as perception and online mapping, it did demonstrate that sequential

decision making is successful at following natural language directions, and most

importantly that our approach can generalize to novel environments the robot had

never seen. We used imitation learning to train a policy, using data that had

been collected at MIT, and then applied that policy (without any modifications)

to a completely different environment at CMU. The policy successfully followed

natural language directions through an unknown unstructured environment, and also

demonstrated backtracking to recover from errors.

CoBot has already demonstrated long-term deployments and many real world

cases of user interaction, which makes it an ideal platform for investigating future

integration work with our approach. Adding a control interface for CoBot driven

primarily by speech and natural language would provide extensive data on real world

usage and performance of our approach to following natural language directions.

Furthermore, since people already rely on CoBot to perform tasks, it would serve as a

great experimental platform to extend our approach to other tasks (beyond following

directions), and improve human-robot interaction through natural language.

Second, our demonstration of the semantic mapping capabilities from Chapter 5,

combined with our belief space policy from Chapter 6 on two different robots (the

Husky and the MIT autonomous wheelchair) showed that inferring a distribution of

maps (from the information contained in the natural language) and using it to follow

the directions can lead to performance that is comparable to following directions with

a completely known map. These platforms use a camera-based perception system

and a laser-based online mapping framework, with the help of fiducials for object

classification. We demonstrated the ability to reason about objects (e.g., cones,

hydrants), regions (e.g., hallways, kitchens), and the relationship between them (e.g.,

behind, down). Our approach is agnostic to the specific perception and low-level

planning systems on the robot platform.

143

7. Integrated Demonstrations on Autonomous Indoor Robots

We presented physical experiments on the Husky and Wheelchair across several

different scenarios, repeating multiple trials on both platforms. Additionally, our

simulated experiments provide more extensive results, and more importantly show

that our approach performs well across a wide range of parameters such as the sensing

range. These results demonstrate that language contains useful information about

the world that can be used to infer a distribution of maps. Additionally, we showed

that this approach can handle ambiguous directions, such as a direction that does not

specify which object the goal may be behind. By updating the distribution of maps

and reasoning in belief space as the robot gathers more information, our approach can

recover from false initial assumptions (in this case, going behind the wrong object)

to successfully follow complex natural language directions.

In the following chapter we present another real world application of our approach

to understanding natural language instructions, this time in a large-scale outdoor

environment. This system integrates a complete mapping and perception pipeline

(with semantic image labeling and 3D LIDAR scanning), a cognitive architecture

for prediction and long-term planning, and our natural language understanding

approach. As we will show, this complete integrated approach enables us to successfully

follow complex natural language directions through unknown unstructured outdoor

environments.

144

Chapter 8

Integrated Demonstrations on an

Autonomous Outdoor Robot

To achieve great things, two things are

needed: a plan and not quite enough time.

Leonard Bernstein

We now present an extension of our work on imitation learning for natural language

understanding to a robot operating in a large unstructured outdoor environment. As

in previous chapters, the robot starts with no knowledge of its environments and

must make decisions using the information it has collected so far. The perception

systems in this chapter are a combination of an image-based semantic classifier and

a 3D point cloud object detector. One key difference from our previous approach

is that in this chapter we learn to ground language to the space of plans instead of

mapping language to actions:

π = argmin
plans

cost (plan | language,world) . (8.1)

The world representation in this chapter is a more complex representation of the

environment the robot is operating in. It will include objects detected by the various

perception systems running on the robot, as well as predictions of some parts of the

environment. After the robot selects the minimum cost plan, it begins to execute it.

145

8. Integrated Demonstrations on an Autonomous Outdoor Robot

Navigate quickly to the back of the
building that is behind the car.

Figure 8.1: The Husky robot platform executing a natural language command in an
outdoor environment.

As in prior chapters, we will continuously update the world model and replan as the

robot gathers more information about the world.

This chapter is drawn from a previous publication by Oh et al. [111] as part of the

Robotics Collaborative Technology Alliance (RCTA) project. We present a summary

of our approach and the system description as a service to the reader, and defer to

the paper for full details. The specific contributions of this dissertation to the RCTA

project are:

• a cost-based planning algorithm that takes into account language landmark

constraints (e.g., “left of,” “around”), or a navigation mode (e.g., “quickly,”

“covertly”),

• a method for learning the planner cost function using imitation learning, and

• features for reasoning about the navigation mode.

We begin with an overview of all the system components in Section 8.1, then present

experimental results collected over several field trials in an outdoor training facility

consisting of a simulated town in Section 8.2. We then highlight key differences to

our previous approaches and present a summary in Section 8.3.

This chapter addresses natural language command of an autonomous mobile

robot operating in an outdoor environment consisting of buildings, cars, and other

objects such as traffic barrels and fire hydrants. For example, we show one possible

command in Figure 8.1. In addition to specifying a goal landmark, the natural

146

8. Integrated Demonstrations on an Autonomous Outdoor Robot

	 	 	 	 	 ATTENTION	 LEVEL	
	

	

	 	 	 	 	 	 	 	 	 INTERACTION	 LEVEL	
	

	
Controller	

	 	 	 	 	 Pla+orm	 Rivet simulator, LAGR, Husky

Robot/world	 interac4on	 via	 contact	
Low	 uncertainty	

Percep4on	 /	
Planning	

Geometric	 reasoning	
Policies	 via	 strong	 robot	 model	

MISSION	 LEVEL	
	
	

	

High-‐level	
Reasoning	 Doctrine/context	 templates	

High	 uncertainty	

W
O
R
L
D

M
O
D
E
L

L
E
A
R
N
I
N
G

ACT-R

Human	 teammate	 Multimodal interface: speech, gesture
TBS

Figure 8.2: Our intelligence architecture for human-robot teams.

language command also describes any specific constraints to obey during execution

(e.g., “keep left of the car”), and also a desired behavior for the robot to maintain

while it is traveling (e.g., moving “quickly” or “covertly”). The robot must then infer

a plan that takes it to the intended destination, while obeying the explicit constraints

and exhibiting the desired behavior.

8.1 System Overview

We have integrated multidisciplinary components into a combined intelligence ar-

chitecture that enables a robot to perform high-level cognitive tasks specified in

natural language in an unknown environment. We leverage recent developments

from the fields of cognitive architectures, semantic perception, and natural language

understanding. This architecture is platform-independent and flexible to implement

various tactical behaviors (for example navigation, search, or manipulation).

Our system architecture, shown in Figure 8.2, is tightly coupled to the world

model [37]. The architecture consists of a hierarchy of tasks at three levels: mission,

attention, and interaction. Every task is a computational node that encapsulates a

particular functionality: each node interleaves perception, planning, and execution

147

8. Integrated Demonstrations on an Autonomous Outdoor Robot

Navigate covertly left of the building !
 <action> <mode> <action-constraint>!
!

to a traffic barrel behind the building. !
 <goal> <goal-constraint>!

Figure 8.3: An annotated Tactical Behavior Specification (TBS) command. The TBS
is a semantically annotated clause, similar to Spatial Description Clauses.

monitoring. At each level, the world model stores all of the data for matching the

task’s pre- and post-conditions. The world model also stores resource models for the

robot, the current task/subtask execution trace (for monitoring and inspection), and

the history of this trace (for offline learning).

Mission Level: The tasks at the mission level implement specific doctrines, and

mimic human functionality. The tasks determine how to sequence atomic actions

at the next level down in order to achieve the mission. The basic actions are pre-

determined, but the challenge is to figure out when and how to apply these templates

to particular cases, or to modify actions based on situational awareness and context.

The world model includes state data that represents contexts and situations as well

as tasks and subtasks that are planned and being executed.

Attention Level: The mission-level tasks call attention-level tasks to navigate

from place to place, grasp and manipulate objects, and perceive semantic objects

and hazards. Rather than encoding doctrines, the reasoning at this level is primarily

geometric. For example, a task reasons about how to move a manipulator to avoid

obstructions and get into position to grasp an object. The world model includes grids

of hazard data (interpreted relative to a particular robot model), semantic objects

such as doors or buildings, scrolling maps, and planned/executing tasks and their

sub-goals.

Interaction Level: The attention-level tasks call interaction-level tasks to move

the robot. Tasks at this level are essentially controllers, and typically cycle at 10 Hz

or faster. At this level, the world model includes robot kinematics and dynamics, as

well as metric data such as geometric shape, appearance, and material properties for

objects in the world.

148

8. Integrated Demonstrations on an Autonomous Outdoor Robot

Natural Language Input

The system accepts as input free-form natural language commands. Just as we did in

Section 3.1, we convert the natural language command into a sequence of structured

clauses. For this application, we developed a new structured clause called the Tactical

Behavior Specification (TBS). It consists of the following fields:

• action: the high-level behavior. We focused on navigation, but this could be a

search or observe behavior

• goal: a landmark in the world that specifies the destination

• goal constraint: relative location of the goal landmark with respect to other

landmarks in the world (to clarify which landmark to use as the goal)

• action constraints: list of constraints to obey while following the direction

• mode: desired behavior to obey while performing the task

By extracting these semantically meaningful terms from the command, we will

again be able to reason separately about the various components in the command.

For illustration, Figure 8.3 shows the TBS representation for the natural language

command “navigate covertly to a traffic barrel behind the building while staying left

of the building.” In this work we convert the natural language direction into this TBS

form using a variant of the Hierarchical Distributed Correspondence Graph (HDCG)

model [59].

Perception

The robot (ClearpathTM Husky) is equipped with a 2D camera (Adonis) and a 3D scan-

ning LADAR sensor (General Dynamics XR). The LADAR sensor is mounted 0.7 m

above ground which creates approximately 4 m radius dead zone around the robot.

To remedy this, we installed a 2D scanning laser (Hokuyo UTM-30LX) at 0.25 m for

obstacle detection in this dead zone. The camera is used for scene classification and

identification of objects in the robot’s field of view. The perception labels are: wall,

grass, asphalt, concrete, traffic barrel, car, gas pump, and fire hydrant. The output of

the classifier is then mapped to the LADAR point cloud to render a colorized point

cloud.

Our camera-based scene classifier was developed by Munoz et al. [107]. This

149

8. Integrated Demonstrations on an Autonomous Outdoor Robot

Car

(a) Semantic image classification and labels.

traffic	 barrel	

fire	 hydrant	

car	

unknown	

Object 1 Object 2

(b) Point cloud object detection.

Figure 8.4: Semantic perception capabilities on the Husky robot, using a 2D image
classifier (8.4a) and a point cloud based classifier (8.4b).

method operates by super-segmenting the image, predicting a distribution of labels

for each small region, and refining the classifier at progressively coarser levels. We use

the most probable label for each of region to label the image, Figure 8.4a shows one

classified image. Since this scene classifier labels pixels but does not detect individual

objects, we project the image classification into the 3D point cloud to separate labeled

pixels into discrete objects.

The 3D perception has two purposes: detecting walls and clustering pixels into

objects. To detect walls the system looks for planar surfaces using RANSAC [48].

Neighboring walls can either be merged or connected via corners. This will provide

the basic structure that compose buildings. To form objects, we cluster pixels using

the Euclidean distance in the Point Cloud Library [136], and use Naive Bayes to

classify each cluster according to the distribution of class labels generated by the

image classifier, as shown in Figure 8.4b.

Prediction

Because the robot is operating in an unknown environment, it will not have complete

knowledge of the landmarks around it. Our grid-based planning algorithm requires

150

8. Integrated Demonstrations on an Autonomous Outdoor Robot

Traffic barrel

high cost

low cost

snow

5	

6	 wall

3	

4	

7	

6	

8	

1	 2	

Figure 8.5: Building and landmark prediction using partial information. Using a view
of the front of the building (left), the robot extracts from its point cloud clusters of
walls (center). Then, the cognitive architecture predicts (right) the remainder of the
building based on examples in its declarative memory, and the location of the goal
landmark (traffic barrel) using the information in the TBS.

a complete world representation, so we predict unknown parts using the sensor

information available to the robot. The prediction module attempts to predict two

things: the complete shape of buildings around the robot (even though it may only

see part of it), and the possible locations of unknown landmarks that would obey the

natural language command.

The robot first predicts the entire shape of the building using clusters of walls

it has previously detected (described above). For example, in Figure 8.5 the robot

can initially only see the front of the building. To reason effectively about where the

goal could be, it generates a prediction of the entire shape of the building, including

the parts it cannot yet see (in this case, the side and back). We use a cognitive

architecture (ACT-R [7]) to generate this prediction, by matching the data it has

to geometric patterns in its declarative memory. These patterns are compiled from

training data of buildings around the test site. We update the predicted shape of the

building as it gathers more information.

Once we have a complete prediction of the building geometry, we predict the

possible location of any necessary unknown landmarks. More specifically, if the goal

landmark has not been detected we use the information contained in the TBS (the

goal and relation fields) to determine a possible location for the goal. This predicted

151

8. Integrated Demonstrations on an Autonomous Outdoor Robot

object will be used by the assumptive planner to plan a path to the goal.

Natural Language Reasoning

Once the perception system detects objects and the prediction module generates

a (possible) complete model of the environment, our natural language reasoning

component first grounds the landmarks in the TBS to objects in the world, then

produces a costmap for the TBS constraints. The planner will then combine this

costmap with others (such as obstacle avoidance) and optimize the combined costmap

to generate a full path to the goal.

The grounding component addresses the question of which landmarks in the world

correspond to the ones in the TBS. We associate each landmark in the TBS command

with an object in the world model by taking into account the landmark name (in the

TBS) and the object label (its semantic class). We additionally use any given spatial

constraints (the goal constraint TBS field) to reason about the relationship between

possible goal objects and neighboring objects, using spatial features describing the

relative geometry between both objects (e.g., “behind the car”). This component

grounds the landmarks described in the TBS to objects in the world model.

The spatial navigation components addresses how to travel such that the resulting

path obeys the linguistic command. We treat this problem as learning a mapping

from linguistic terms (such as “left of,” “around,” or “covertly”) to a cost function f

that can be used to generate the costmap for any cell in the grid. More specifically,

given a TBS spatial term σ, the robot solves the planning problem of finding the

minimum cost path ξ∗ under the cost function fσ:

ξ∗ = argmin
ξ∈Ξ

fσ (ξ) (8.2)

= argmin
ξ∈Ξ

wTσ φ (ξ) (8.3)

where the set of valid paths is Ξ, and we assume that the cost function fσ takes

the form of a linear sum of features φ under weights wσ. The features describe the

shape of the path, the geometry of the landmark, and the relationship between the

two [158].

We use imitation learning to learn the weights wσ from a set of N demonstrated

152

8. Integrated Demonstrations on an Autonomous Outdoor Robot

High

low

(a) Constraint “left of.” (b) Mode “covertly.”

Figure 8.6: Learned navigation cost functions and resulting paths (drawn in black,
starting at the pink plus symbol) for the navigation spatial constraint “left of” and
the navigation mode “covertly”. The red rectangles are outlines of buildings.

paths {ξ̂i}N1 . To do so, we minimize the difference between the cost of the expert’s

demonstrated path ξ̂ and the minimum cost path under the current cost function.

This can be written as the following loss function:

`
(
wσ, ξ̂

)
= wTσ φ(ξ̂)−min

ξ∈Ξ
wTσ φ (ξ) +

λ

2
‖wσ‖2 (8.4)

with regularization parameter λ. This Max Margin Planning formulation [121]

learns the cost function that we use to generate paths obeying the natural language

constraints. Figure Figure 8.6 shows two sample costmaps for the terms “left of” and

“covertly.” Note that the covert mode is not a well-specified concept, but we can

nevertheless learn this behavior from demonstrations of desired paths. The resulting

costmap for each behavior can be used by the planner to generate a minimum cost

path (shown in black) that reasons about the user’s natural language constraints.

153

8. Integrated Demonstrations on an Autonomous Outdoor Robot

Table 8.1: Several TBS commands used in the experiments. These
commands are in semi-structured English.

Navigate quickly to a car that is near the fire hydrant.

Navigate quickly to the building that is near the traffic barrel.

Stay to the left of the building; navigate quickly to a traffic barrel that

is to the back of the building.

Stay to the right of the car; navigate quickly to a traffic barrel that is

behind the car.

Stay to the left of the building; navigate quickly to a fire hydrant that

is to the left of the building

Stay to the right of the car; navigate covertly to the right of the

building that is behind the car.

8.2 Experimental Results

The examples and results reported in this section are based on outdoor experiments

conducted in a 1 km2 training facility located in central Pennsylvania, that includes

12 buildings in a simulated town. The simulated town contains a gas station (with

gas pumps), and we can further vary the situation by moving cars, traffic barrels,

and fake fire hydrants into the scene.

The dates of the experiments spread between December 2013 to August 2014 with

varying conditions in terms of weather, sunlight, background, and terrain conditions.

This included several runs after heavy snow, arguably more uncomfortable for the

experimenters than the Husky robot. In these experiments we used semi-structured

English commands as commands to the robot, Table 8.1 lists some of the commands

used. We commanded the robot with 30 unique natural language commands over 46

different runs. We present a summary of the experimental results in Table 8.2. A

majority of the runs were successful, and traveled a significant distance through the

initially unknown environment. Common causes of failures in the 11 incomplete runs

included network communication problems, platform errors, or operator intervention

(due to unsafe commanded plans).

To illustrate two individual runs, we show in Figure 8.7 visualizations from different

154

8. Integrated Demonstrations on an Autonomous Outdoor Robot

Table 8.2: Overview of results on the Husky robot plat-
form.

Number of unique TBS commands 30

Total number of runs 46

Number of successful runs 35

Number of incomplete runs 11

Distance traveled per run (m) 21.0± 14.3

Number of runs traveled more than 30m 11

gravel grass

wall

Predicted
 goal

Detected
 goal

traffic barrel

(a) Navigating to a traffic barrel.

Car

Car
(false)

Building

Building

(b) Navigating to a building.

Figure 8.7: Illustration of two separate runs. The commands are “Keep to the left
of the building; navigate to a traffic barrel that is behind the building” (8.7a), and
“Keep to the right of a car; navigate to a building that is behind the car” (8.7b).

parts of the run for two commands. The first command (“Keep to the left of the

building; navigate to a traffic barrel that is behind the building” in Figure 8.7a)

shows the robot detecting the front two walls of the building (top left panel) and

predicting the rest of the building using the cognitive architecture (top right). In

addition, the robot predicts a goal location and then plans a path to this goal that

obeys the constraints (“left of the building”) specified by the command. After the

robot rounds the corner it detects the actual traffic barrel (bottom left panel). It

replaces the predicted goal with the detected object and executes the remainder of

the plan (bottom right).

The second command (“Keep to the right of a car; navigate to a building that is

155

8. Integrated Demonstrations on an Autonomous Outdoor Robot

behind the car” in Figure 8.7b) shows one of the longest runs the robot completed.

The robot first had to detect cars in order to determine which building to navigate to.

Even though the robot incorrectly perceived a car on the right, it correctly associated

the TBS action constraint landmark to the correct object in its world model. The

right panels shows the resulting coarse costmap for the constraint (“right of the car”)

and the final path.

8.3 Chapter Summary

This chapter presented an extension of our work on natural language understanding

to large-scale outdoor environments. This dissertation’s contributions were a small

part in a much larger architecture that includes a full semantic perception system, a

cognitive architecture for prediction and long-term planning, and spatial reasoning.

Each individual module interfaces with a common world model. This chapter presented

several anecdotal runs of the robot in a variety of real world conditions.

This project taught us some valuable lessons. First, it was very important that

our approach to natural language understanding make few assumptions about the

structure of environment or robot capabilities. Our general approach was easy to

extend to this scenario, even though the optimization problem was significantly

different (optimizing over paths, not single-step actions). Second, the scenarios

presented here highlight the need for prediction of the relevant parts of the world

(unknown parts of the building and goal landmarks). Third, the tight integration

necessary between all the components required many iterations of implementation

and testing in the field.

The work in this chapter is another step towards enabling human-robot teams

to work together towards increasingly complex tasks. To enable robots to become

full-fledged teammates, they will need to perform complex tasks that requires a

semantic understanding of the world, high-level cognitive reasoning, natural language

understanding, and the ability to work in unknown environments.

156

Chapter 9

Summary, Contributions, and

Future Work

There are other Annapurnas

in the life of men.

Maurice Herzog

The experimental results presented in Chapters 7 and 8 provide experimental

validation of our framework for following natural language directions across a variety

of robotic platforms. These robots operate in a variety of environments (some of

which are novel to the robot) and follow a variety of natural language commands.

We demonstrated that robots can understand directions in completely unknown

environments, discovering landmarks as they follow the direction. If the command

contains implicit information about the environment (for example, the location of

a landmark the robot cannot yet see), the robot can use this information to infer a

suitable distribution of world models. Additionally, the corpora-based experiments

from Chapters 4 and 6 demonstrate our approach in a more controlled (and repeatable)

setting, with many more natural language directions.

We finish by summarizing this dissertation (Section 9.1) and its contributions to

the field of robotics (Section 9.2). We then present several interesting directions for

future research (Section 9.3), and conclude with some parting thoughts (Section 9.4).

157

9. Summary, Contributions, and Future Work

9.1 Dissertation Summary

This dissertation addressed the problem of enabling autonomous robots with realistic

perception to understand natural language directions. The prior approaches we

studied (Chapter 2) fall into two broad categories: approaches that require a full

map of the environment ahead of time, and approaches that do not require a map

but have only been applied to highly structured environments (such as simulated

environments or buildings without landmarks). Following natural language directions

in unstructured unknown environments is a difficult problem because the robot must

make decisions using a partial representation of the environment that it builds up

incrementally. The robot must take a sequence of actions that explore the environment

and follow the natural language direction.

We formulated this problem as one of decision making under uncertainty (Chap-

ter 3), in which a policy commands actions to the robot using its knowledge of the

world so far. We first made the problem of understanding natural language tractable

by exploiting the structure inherent in directions: they are sequential and each clause

refers to different meaningful terms. In this dissertation, we exploited this structure

by modeling a complex natural language direction as a sequence of semantically

annotated clauses (Spatial Description Clauses). Each clause contains an annotation

of the verb, landmark, and spatial relationship present in the direction. In our later

work, we extended this structure to include information about navigation landmarks

the robot would see along the way. This decomposition enables the policy to reason

efficiently about long directions.

The policy relies on a partial map of the environment that combines metric,

topological, and semantic layers. This map is then used to generate a set of valid

actions for the robot. Some actions represent information gathering (traveling to an

unknown place), backtracking (traveling to a previously visited place), or declaring

the robot has finished following the direction (the stop action). Explicitly reasoning

about the stop action enables us to follow directions in unknown environments without

exploring the entire environment. The policy selects the lowest-cost action to execute

on the robot, using a cost function that is a linear combination of features of the

state-action pair. These features numerically relate the natural language command

to the action under consideration, and more importantly features enable the policy

158

9. Summary, Contributions, and Future Work

to generalize to new directions and even new environments.

We presented an approach for training the policy through imitation learning,

using human demonstrations of following directions (Chapter 4). Imitation learning

is especially well suited for unstructured environments: engineering (and tuning) a

system to reason about a complex environment would be time consuming, whereas

collecting human demonstrations is much less expensive. We demonstrated it is

possible to use imitation learning to train policies that follow natural language

directions, and that the resulting policy encapsulates a person’s complex decision

making when following directions.

The training phase of our approach collects the policy’s decisions in an unknown

environment. While this approach requires more implementation effort, learning in

unknown environments trains the policy to reason about the uncertainty in the map,

and ensures the data available to the policy at test time is similar to what the policy

was trained on (as opposed to approaches that train on complete environments and

remove the map at test time).

Furthermore, the policy can learn to recover from mistakes by using demonstrations

of both successes and failures. This ability to recover is especially important when

dealing with unknown environments, as the policy is more likely to make a mistake.

Learning this requires making mistakes at training time and receiving demonstrations

of the correct behavior. While the expert demonstrations generally do not contain

failures, we showed a simple approach for inferring a complete expert policy and use

it to include training examples from states where the learned policy made a mistake.

Using training data from both good and bad states enables us to learn a policy that

can recover from errors.

We evaluated our approach on a corpus of directions in Section 4.5, where we

demonstrated the performance of policies that follow natural language directions

through unstructured unknown environments. Through quantitative and qualitative

results, we showed the benefit of various features in our representation, as well as the

importance of learning error recovery.

This dissertation then introduced the notion of language as a sensor in Chapter 5.

This extends our approach to handle complex instructions that convey information

about both the task (what the robot should do) but also about the world (what

objects are still undetected). We proposed to use language to infer a distribution of

159

9. Summary, Contributions, and Future Work

maps that provide a hypothesized view of the environment beyond the robot’s sensor

range.

We showed how to use this distribution of possible environments, extending our

policy to reason about a distribution of possible landmarks in Chapter 6. We presented

a novel imitation learning approach for learning these belief space policies, once again

using demonstrations of people following directions. We showed that this approach

outperforms the standard policy when the directions contain additional information.

In essence, our results show that leveraging the additional information contained in

language to hypothesize a distribution of maps enables performance that is close to

that of having a fully-known map.

Chapters 7 and 8 presented some illustrative demonstrations on various integrated

robot platforms, operating indoors and outdoors. These highlight the generalizability

of our approach across various robot platforms with different sensing configurations.

We also presented more extensive simulated results that varied parameters such as

the sensing range, providing a clearer picture of the performance of our approach

compared to operating in a completely-known map.

9.2 Contributions

This thesis contributes a framework for understanding and following natural language

through unstructured unknown environments. While prior work focused on the prob-

lems of following directions through known unstructured environments or unknown

structured environment, our approach is the first to address the problem of following

natural language directions through unstructured and unknown environments. In

this section we highlight our scientific contributions to the fields of human-robot

interaction (HRI) and cognitive robotics, grounded language acquisition, and belief

space reasoning and learning. Specifically, we show how robots can follow natural

language directions, use language as a sensor, as well as reason (and learn) in belief

space. Additionally, this chapter will highlight several key lessons learned while

conducting this research.

160

9. Summary, Contributions, and Future Work

Following natural language directions

To enable robots to follow natural language directions through unstructured unknown

environments, we presented a novel formulation of this problem as sequential decision

making under uncertainty. In this formulation, a policy makes a sequence of decisions

using only the partial map information it has collected. This is in contrast with

planning approaches that optimize complete paths in the environment (requiring a

full map), or parsing approaches that convert natural language to formal controllers

representing the intent of the command (and have only been applied to highly-

structured environments). Our approach is much more flexible, and has the following

beneficial properties:

• our approach does not require an a priori map of the world,

• our approach makes no assumptions on the structure of the environment,

• our approach is agnostic to robot platform, sensor configurations, and underlying

low-level planners,

• our approach can learn the meaning of arbitrary words (provided there are

demonstrations of it),

• our approach learns policies that reason about the unknown parts of the

environments,

• our approach learns policies that can recover from mistakes,

• our approach produces policies that generalize to different directions, and even

new environments.

Together, these properties provide an efficient and novel solution to the problem of

following natural language directions through unknown environments. Additionally,

we presented a novel imitation learning approach to grounded language acquisition.

Our approach trains policies to reason about uncertainty and recover from mistakes,

using demonstrations of people giving and following directions.

We demonstrated that our approach learns policies that can successfully follow

natural language directions in unknown unstructured environments. We have shown

that these policies can generalize to new directions, and can even transfer to new

environments the robot has never encountered before. We furthermore demonstrated

this approach on several robots: CoBot (an indoor symbiotically autonomous robot)

161

9. Summary, Contributions, and Future Work

operating at CMU, an autonomous wheelchair operating at MIT, and the Husky

robot operating in large-scale unstructured outdoor environments. Our approach is

independent of the particular platform, its sensing capabilities, or low-level planner.

Because of our decisions to remain independent from the capabilities or configuration

of a single platform, we were able to easily generalize our approach across a variety

of robots.

More generally, one of the important insights of this work is that human-robot

interaction can be formulated as a problem of sequential decision making under

uncertainty, with several key benefits. First, we can train a policy to make good

decisions using only the information available so far, and make new decisions after the

robot receives new information about the world. Second, rather than coding complex

error recovery behavior, the policy can represent error recovery naturally by using

additional actions. As we will show in the future work, this could include dialogue

with a user. Third, this formulation is efficient: we do not need to plan for long

horizon trajectories that would likely become invalid as soon as the robot gains new

information. Fourth, imitation learning in the context of sequential decision making

has been well studied (our approach is one such application), and imitation learning

could be an efficient way to train complex HRI system. While this thesis focused

solely on the problem of understanding natural language directions, this general

approach of modeling human-robot interaction as making a sequence of decisions

could be useful for a wide range of HRI problems.

Using Language as a Sensor

We are the first to introduce the notion of language as a sensor, enabling robots to

infer a suitable explicit world model that can improve its performance.1 We showed

that some natural language commands contain both explicit information about the

task (what the robot should do), but also implicit information about the world

(what the robot will see). For the problem of following natural language directions,

treating language as a sensor enables a robot to explicitly model the uncertainty in

the unknown parts of the environment by utilizing the information already provided

in the natural language direction. We then contributed a novel approach to inferring

1This is a joint contribution with Sachithra Hemachandra, Thomas Howard, and Matthew Walter.

162

9. Summary, Contributions, and Future Work

a distribution of maps and behaviors from a natural language command, by utilizing

the information in the language about the world to hypothesize the location of

landmarks. Then, we utilize the information in the language about the task to infer

a distribution of behavior constraints under this distribution of maps. We use this

inferred distributions in a belief space policy that reasons about a distribution of

landmarks to follow the direction. Similarly to our early work, the robot updates its

world representation as it travels through the environment and senses new landmarks.

Our approach of learning to mine language for additional information about the

world enables performance on robots that is comparable to the performance when a

fully-known map is available.

This area of research has potential for many more contributions in the field of

grounded language acquisition, we will highlight some of these in Section 9.3.

Belief Space Reasoning and Learning

Our approach of leveraging the implicit information to infer a map distribution

enables robots to successfully follow directions that are more complex by explicitly

representing the uncertainty about the world. To handle this uncertainty, we presented

a belief space policy that is an efficient solution to the problem of reasoning and acting

in a state distribution. This policy is fast and efficiently makes use of the information

provided in the map distribution by reasoning about the uncertainty inherent in the

information available. To learn this belief space policy, we present a novel formulation

of inverse reinforcement learning in belief space that uses a kernel embedding of the

action feature distribution. This approach learns a belief space policy from human

demonstrations, and captures the expert’s behavior given the uncertainty in the

environment. It enables the policy to handle more complex commands that may

have some ambiguity (at least from the perspective of the robot). Our experiments

demonstrated that the ability to reason and learn in this belief space enables robots

to recover from false assumptions they make when following directions.

Applying imitation learning techniques to learn from a distribution of data is a

similarly promising avenue for future research.

163

9. Summary, Contributions, and Future Work

9.3 Future Work

While the contributions outlined above further the state of the art in natural language

understanding for robots, there are scenarios that were beyond the scope of this

dissertation that would be interesting future problems to address. Additionally, our

findings raise new scientific questions that are promising avenues for future research.

These future research topics lie along several dimensions: handling more varied natural

language commands, dealing with more complex integrated robot systems (that may

have more sources of uncertainty), and improving the human-robot interaction. In

this section we detail several future work ideas, and how we might begin to address

them.

Handling complex language directions

One shortcoming of this dissertation is that all commanded directions were fairly

simple by design. Dealing with more complex language can be done at several levels,

and a successful solution will likely be a combination of:

• mapping complex language to a simpler (SDC-like) representation. In many

cases complex language contains utterances that are not necessary to follow the

direction correctly.

• learning the meaning of more verbs and spatial relationships by increasing the

amount of training data.

• improving the object co-occurrence reasoning component, to better handle

references to arbitrary landmarks.

• building better priors over landmark locations given a language command, to

better guide the policy. This could even be extended such that a robot may not

need to perceive a particular landmark if the belief distribution is well localized.

These improvements would require a mix of expertise in Natural Language Processing,

Semantic Mapping, Imitation Learning, and Belief Space Reasoning. Fortunately

because our approach is modular (the components are independent from one another),

we can replace one module easily to better handle certain cases and re-evaluate our

approach.

164

9. Summary, Contributions, and Future Work

Dealing with incorrect or highly-ambiguous directions

In this work we have assumed the directions given by the user are correct: they do not

contain mistakes, and the direction contains enough information to follow it correctly.

When these assumptions do not hold, our current approach will generally do poorly.

The major reason is that the transition between clauses (with the stop action) is final:

when the policy transitions from one SDC to the next the policy never considers it

could have made a wrong decision. This wrong decision could have been caused by a

single SDC that was very ambiguous (with multiple possible options), a landmark

mentioned by the user that cannot be detected by the robot, or the policy could have

simply made a mistake.

In this case, after it transitions to the next SDC the policy will be forced to

follow the remaining clauses even if it receives more information that makes it clear

the policy made a mistake early. This is because we do not currently have a way

to recover from errors in the stop action. For instance, a robot following a long

direction may turn into a hallway, transition to the second SDC in the direction,

and after a few more actions notice the hallway is a dead end. The best response

would be to backtrack across SDCs (back to the previous SDC), return to the original

starting point, and use this newly-gathered information to better follow the direction.

Enabling the policy to reason beyond myopic single-SDC segments when following

directions would make this approach much more robust.

One way of accomplishing this would be to enable the policy to consider any of

the previous SDCs when making a decision by reasoning in the belief space of ways to

follow the direction. In this setting, the policy could consider a set of actions for all

SDCs instead of only the current one, and represent the likelihood of the command

being correctly-followed under the map known so far. In the above scenario, after the

policy realizes the hallway is a dead end it could still consider an alternative action

for the first SDC. This process could be made efficient using samples from the belief,

for example using a particle filter. Essentially, this would allow the policy to consider

that it made a mistake at the transition point and consider many more possibilities.

Reasoning about directions that are incorrect (i.e., contain mistakes) is more

challenging. For example, people sometimes confuse directions (left instead of right),

provide references to landmarks that are no longer present (e.g., “turn left where

165

9. Summary, Contributions, and Future Work

the statue used to be”), or under-specify the command (e.g., “find the stairs”). We

can already begin addressing some of these issues using our map inference approach,

especially for cases relating to landmarks (by hypothesizing possible locations and

following the direction in a distribution of maps). For completely wrong directions,

one approach would be to learn a model of how people make mistakes when giving

directions, and combine it with the ability to reason across the entire direction

described above. When the robot begins to observe an environment that does not

match the given direction, the possibility that the direction contains a mistake would

increase.

Grounding to task parameters

In Chapter 8 we mapped language to the navigation mode for a robot navigating to

a goal (in this instance, quickly or covertly). These language-based task parameters

do not explicitly prescribe what to do, but rather how to do it. There may be

interesting scenarios where the task is known, but we can use language to determine

the parameters of the task. Manipulation is another setting where language can be

used to convey information about how to grasp or manipulate an object (e.g., gently,

keeping the object upright, staying away from something, etc.). While some of these

task parameters are evident, others may require learning from demonstrations.

Increasing the amount of natural language interaction

While this dissertation is an important step towards effective human-robot collab-

oration using natural language, a strong limitation is that the natural language

interaction only happens once, and always from the user to the robot. The user

commands the robot with a direction, and the robot is expected to execute it without

any further information from the user. Two ways of increasing the amount of natural

language interaction are enabling the robot to take further directions from the user

during execution, and adding a dialogue component.

When the user is monitoring the robot during execution (for example while sitting

on the autonomous wheelchair), he or she has the opportunity to provide more detailed

descriptions of the environment, or even give further directions while the robot is

executing the desired task. For example, the user could provide a rough direction at

166

9. Summary, Contributions, and Future Work

the beginning, and then provide more accurate descriptions of the environment when

they are relevant. Additionally, the user could modify their instruction or provide

a new one entirely. One such modification could occur if there is some ambiguity

and the robot (unsure about where to go) selects the wrong option (for example,

the robot chooses the wrong hallway to travel down). In this case, the user could

easily provide a modification to the task (for example, saying “not that hallway”).

Our current formulation could handle both of these additional inputs by enabling the

semantic mapping framework to continuously accept and process new annotations.

Human-robot dialogue would be another avenue for increasing the amount of

language driven interaction. Many approaches have studied dialogue in human-robot

teams, and ours is well suited to the problem because we represent the uncertainty in

the world explicitly (by reasoning about the distribution of possible environments).

When there is high uncertainty in this representation and the robot could gain a lot

of information from the user, asking a question may be one possible action the robot

considers. This would enable the robot to ask clarifying questions or request further

information from the user.

Applications to other tasks and domains

This thesis focused on the problem of following natural language directions through

unknown environments. However, the techniques of using language to command

robots and learning a sequential decision making policy could be applied to other

tasks and domains. For example, cooperative manipulation tasks (where the robot

is assisting a user by carrying something) would benefit from a natural language

interface. The user can explicitly describe what they expect the robot to do using a

natural language command, without relying on complicated operator interfaces or

implicit information like forces.

Similarly, natural language could enable robots to perform complex household

tasks in assistive settings. These robots may need to perform a variety of tasks

ranging from manipulation (e.g., picking up an object), navigation (e.g., autonomous

wheelchair going somewhere), search (e.g., looking for an object), and many others.

Rehabilitation robotics will be an increasingly fruitful area of research into effective

interaction modalities, and it is likely that speech will play an important role.

167

9. Summary, Contributions, and Future Work

Reasoning about perception uncertainty

We purposefully limited the scope of this dissertation to not include reasoning about

perception uncertainty, but this area holds the promise for more future work. In

this thesis we used several perception systems: a simulated perception system (in

Section 7.1), a fiducial-based perception system (in Sections 7.2 and 7.3), and a

fully-integrated semantic perception system (in Chapter 8). However, our model

of the world assumes that the robot’s perception system only returns the object’s

landmark and geometry, with no uncertainty (these can update as the robot moves,

but we do not explicitly make use of any uncertainty information from the perception

system).

Dealing with perception uncertainty is a challenging problem and will require

improvements to the policy. One approach would be to optimize over the expected

perceived object, by taking into account the likelihood of various possible observations.

Alternatively, using knowledge about the relationship between nearby objects (the

context) would provide a possible solution to reasoning about ambiguous perception

data. In this setting, the policy could use its knowledge about which objects occur

near each other in indoor environments to filter out unlikely detected objects that

may be due to an uncertain perception system. The natural language command can

also provide information about what the robot is perceiving (continuing the theme of

using language as a sensor).

Another approach is to utilize more accurate natural language descriptions of the

world: if the user can describe in enough detail where the landmark is, it may not

be necessary to ever sense it. This may require some dialogue between the user and

robot, to localize (roughly) the location of the landmark. One interesting setting

to consider would be a “blind robot” navigating using its belief about the location

of navigation landmarks, without ever detecting their actual location. Under our

belief space planning formulation, the robot should be able to follow directions using

objects it will never sense, using only a distribution over its possible position.

A third possible improvement would be in the area of active perception. Cur-

rently any observation is opportunistic as the robot moves through the environment.

Planning for perception could improve this, so that the policy actively seeks out areas

of high information gain. This would require representing in the policy the robot’s

168

9. Summary, Contributions, and Future Work

perception capabilities (e.g., field of view), and train the policy to sense by reasoning

about this information.

Reasoning about other sources of uncertainty

One source of uncertainty we do not yet handle is in the task progress, due to

incomplete knowledge of the world. When following directions, the destination (or a

landmark in the next clause) could appear before we expect it. This should cause

the robot to transition to the appropriate place in the direction’s sequence, without

necessarily following all previous SDCs. In more complex tasks, unexpected events

may similarly cause our estimate of the task progress to be incorrect (for example,

finishing the task early because of external events). These situations are good examples

where a policy is beneficial because it uses the latest available information to make

the next decision. In these scenarios, explicitly reasoning about the uncertainty in

the task’s progress could handle this type of incomplete information and enable the

robot to detect when the task is complete.

Our solution of using a policy is not restricted to operating in unknown environ-

ments: even when full world knowledge is available, there may be other aspects of

the problem that are uncertain and warrant a sequential approach. For example, in

settings where actions have consequences there is uncertainty in action transitions.

Manipulation is one such domain, where an action could succeed or fail in unexpected

ways (resulting in an uncertainty in the world state). Similarly, external agents in the

world may introduce uncertainty into the state transitions, for example through their

actions in a collaborative assembly task. Planning single decisions before re-evaluating

the state of the world may be a useful approach to take in these types of scenarios

where reasoning about the uncertainty directly is difficult.

Gathering information about the world through user interactions

We have shown that we can leverage the user’s natural language command to infer

information about the environment (i.e., learning a map distribution from the implicit

information in the command). More generally, we have shown that learning about

the world through user interactions improves performance. Other approaches have

learned environmental knowledge from people, using dialogue [75] or natural language

169

9. Summary, Contributions, and Future Work

descriptions [168]. Extending this idea further, there may be other aspects of the

world we can learn about from user interaction (whether direct or indirect). For

example, observing where people go (and what they do) in an environment could

provide information about the semantic properties of places (e.g., learning where the

kitchen is). This opportunistic information gathering through user interactions would

improve a robot’s reasoning capabilities.

Another source of user information robots could mine is information that is

available on the web. For example, several descriptive directions to different offices in

a building could be used together to generate a rough map of the building layout.

Similarly, non-annotated maps (e.g., floor plans and crude hand-drawn maps) could be

paired with natural language instructions to provide a better view of the environment.

Learning feature representations

The feature representation we used in this work was engineered. It may be possible

to instead learn the feature representation the policy uses to compute the cost of

each action from training data. Ideally this learning feature representation would

encapsulate enough information to represent the necessary information to map

from action to costs, without requiring hand-tuning or feature engineering effort.

Deep learning is a promising avenue that has been used for learning the feature

representation to understand the content of images [79], speech recognition [58], and

even perform automatic image captioning [68, 166].

Additionally, it is possible that the policy could use high-level semantic information

to determine which features are most useful and should be computed. For instance,

features that determine whether or not a path intersects with a landmark may not

be useful for directions that do not have the word “through.” In these cases, only

computing the relevant features may reduce the amount of “noisy” features the policy

must current learn to ignore. This may improve the performance of the system when

following directions by only “turning on” features that are meaningful for the given

command.

170

9. Summary, Contributions, and Future Work

Teaching tasks using language

In this dissertation we trained robots to complete a task expressed in natural language,

using demonstrations of the correct behavior for the task. While in this work we

demonstrated several strategies for providing many training examples from a small

amount of expert interaction (namely, only using a single path), collecting these

demonstrations is still time consuming. One possible improvement would be to teach

the task solely using language. In this setting, the robot would perform some actions,

and receive feedback in natural language. This feedback might be a simple indication

of how well the robot is performing (green light / red light), or modifications to the

current behavior expressed in natural language (e.g., “that was a left turn,” or “those

are the elevators, not the stairs”). This approach would build on work in grounded

natural language acquisition [28, 78, 103] where a robot attempts to learn the meaning

of words and perceptual or world attributes simultaneously, and extend it to learning

tasks. While it would likely require more user interaction to properly learn a task, it

could be applied to more diverse scenarios where providing demonstrations may be

complicated.

9.4 Conclusions

This work is one step towards enabling real robots to understand natural language

in unknown environments. Prior approaches to the problem of following directions

either required a fully-known map of the world, or a highly-structured environment.

These constraints severely limited the environments in which these approaches could

operate. If our goal is to have robots operating in everyday non-specialized environ-

ments without a priori maps, then we need to improve their ability to reason about

unstructured and unknown environments.

This dissertation addressed the specific problem of enabling autonomous robots

to follow natural language directions through unknown unstructured environments.

We first exploited properties of spatial language directions to model directions as a

sequence of semantically annotated clauses. We then formulated direction following

as sequential decision making under uncertainty, and solved it using a policy that is

learned from human demonstrations. This formulation is quite general, and could be

171

9. Summary, Contributions, and Future Work

applied to many other problems in natural language understanding and human-robot

interaction.

Additionally, we showed that language can be used as a sensor to enable robots

to explicitly reason about the unknown parts of the environment. Robots can infer a

distribution of possible maps beyond their perception range, using information from

their sensors and natural language descriptions of the world. More generally, we

have shown that we can learn both a task and suitable world models through user

interaction (in our work, language). This ability to utilize the information contained

in a command will become more important as people will expect robots to reason

about complex tasks including about the parts of the environment the robots have

not yet observed.

People and robots are increasingly working together towards common goals

in shared environments. This rise in human-robot interaction will require new

modalities for controlling robots: ones that go beyond the traditional methods of

programming languages, complex interfaces, or extensive user training. Enabling

robots to understand natural language instructions would allow lay users to command

complex robots in diverse settings such as health care, home assistance, search

and rescue, and factories. This would remove one of the major barriers to having

autonomous robots interacting ubiquitously with non-expert users.

172

Appendix A

Corpora of Natural Language

Directions

As we discussed in the results section of Chapters 4 and 6, we evaluated our approach

on two corpora containing multi-step directions. This appendix details the contents

of these corpora: the verbs, spatial relations, and objects used in the directions. We

also list the entire set of directions used.

A.1 Corpus of Basic Natural Language

Directions

The basic corpus of directions is used in the results presented in Section 4.5. The

directions in this corpus are relatively simple, as we purposefully limited the verbs

and spatial relationships allowed in the directions. Within the restricted space of

language, the directions are still fairly rich: there are multiple ways of expressing the

same command, objects in the world are referred using different names (e.g., “sofa”

vs. “couch”), and verbs occur alone or paired with spatial relationships.

We show the relative occurrence of verbs (Figure A.1a), spatial relations (Fig-

ure A.1b), and landmarks (Figure A.3). These show the contents of all SDCs in

the directions. Additionally, Figure A.2 shows statistics for the total distance each

direction travels and the number of SDCs per direction across this corpus.

173

A. Corpora of Natural Language Directions

0 20 40 60

NULL

straight

left

right

go

turn

Count

Verbs

(a) Verbs

20 40

through

towards

past

NULL

to

Count

Spatial Relations

(b) Spatial Relations

Figure A.1: Verbs and spatial relations used in the basic corpus of directions.

The landmarks are particularly interesting: many SDCs do not use a landmark

(e.g., “turn right”), while some landmarks only occur once or twice across all directions.

This means it is highly likely that the policy at test time will need to reason about a

landmark it has never encountered before. Additionally, many landmarks mentioned

in the directions are synonyms, for example photocopier and copier, or seats, couch,

couches, and sofa. The environment (or perception system) will only contain a single

label for all such instances, so the policy must learn to generalize across different

ways of referring to the same object. The verbs in the SDCs contain many instances

of the non-descriptive “go,” sometimes paired with a spatial relation.

List of basic directions

Below is the complete list of 40 directions used in the basic corpus:

• turn right towards the stair, go straight towards the cabinet.

• turn left to the sofa, turn right to the window.

• go straight towards the sofa, turn right to the cabinet.

• go straight to the whiteboard, turn left, turn right to the tank.

• go through a door, turn right towards the desk, turn left, go straight past the

174

A. Corpora of Natural Language Directions

7.01

29.21

43.81

(a) Path length statistics (m).

1

3

6

(b) Number of SDCs per direc-
tion.

Figure A.2: Distribution of path lengths and number of SDCs for directions in the
basic corpus. (40 directions)

whiteboard, turn left.

• go past the trash, go straight to the window.

• turn right, go past the fountain, go straight to the tank.

• go past the stair, turn left towards the mailbox, turn right, turn left to the sofa.

• turn right, turn left to the fountain, go to the sofa.

• turn left to the whiteboard, go past the fountain, go straight to the couches.

• turn left, go past the whiteboard, go to the cabinet.

• go straight towards the fridge, turn left, go to the whiteboard, turn left to the

tank.

• go past the trash, turn right, go to the desk.

• turn right to the whiteboard, go straight to the fridge.

• turn right, turn left to the elevator, go to the couch.

• go past the fountain, turn right to the trash, go to the cabinets.

• go past the tank, turn right to the photocopier.

• go past the fountain, turn right to the elevator.

• go past the bathroom, turn right to the stairs.

175

A. Corpora of Natural Language Directions

• go past the bathroom, turn left.

• turn right to the bathroom.

• turn right to the whiteboard, go past the water fountain, go to the couch.

• turn left to the seats, go to the cabinets.

• go past the elevator, turn right, go to the copier.

• go past the trashcan, turn left, go straight to the staircase.

• turn left to the elevator.

• turn left, turn right to the mailbox.

• turn right, turn left to the table.

• turn right, turn left to the sofa, turn right to the window.

• go straight to the trash, turn left to the trash, turn right, turn left to the

bathroom.

• go past the elevator, turn right, go through the doors, turn right to the mi-

crowave.

• go towards the fountain, turn right, go through the doors, turn left.

• turn right, go past the whiteboard, go towards the desk.

• go straight towards the desk, turn right, turn right to the tank.

• turn right, turn left, go through a door, go straight past the water fountain,

turn right to the elevator.

• turn right, go straight past the couches, go towards the cabinets, turn left to

the table, turn right, walk straight to the door.

• go past the water fountain, go through a door, turn left, turn right to the

whiteboard.

• turn left, go past the bathroom, go straight through a door, turn right towards

the desk.

• turn left, go through the intersection, turn left to the mailbox.

• go straight towards the microwave, turn left to the door, go straight past the

tank, turn left to the intersection.

176

A. Corpora of Natural Language Directions

0 5 10 15 20 25 30

photocopier
copier
stairs

trashcan
seats

staircase
intersection

doors
couch

microwave
stair

couches
table
water
fridge

window
cabinets
mailbox
cabinet

trash
sofa

bathroom
desk
tank

elevator
door

fountain
whiteboard

NULL

Count

Landmark names

Figure A.3: Landmarks used in the basic corpus of directions. The basic corpus
refers to many landmarks, some of which are not actually objects in the world (e.g.,
a “couch” is labeled as a “sofa” in the map). NULL means there is no landmark
mentioned in the direction.

177

A. Corpora of Natural Language Directions

A.2 Corpus of Complex Natural Language

Directions

In addition to the basic corpus presented above, we created a corpus of more complex

direction and used the combined corpora for the results presented in Section 6.3. These

15 directions contain additional navigation information that is useful for following

the directions, generally references to other landmarks in the world. We show in

Figure A.4 the navigation landmarks and relations. These are used by the policy

as described in Chapter 5. Additionally, Figure A.5 shows statistics for the total

distance each direction travels and the number of SDCs per direction across this

corpus. The directions in the complex corpus are similar to the directions in the

basic corpus: they travel a similar distance through the environment and contain a

sequence of multiple SDCs.

0 10 20

down

across

end

behind

after

near

NULL

Count

Navigation relations

(a) Navigation relation used in the com-
plex direction (each references an ob-
ject).

0 10 20

desk
photocopier

tank
hall

door
fountain

sofa
stair

whiteboard
intersection

NULL

Count

Navigation landmarks

(b) Navigation landmark used in the complex
direction.

Figure A.4: The complex direction contain additional navigation information the
belief space policy can use to follow the direction. This consists of a navigation
landmark and relation the policy can use to locate the goal landmark (e.g., “go to the
door after the water fountain”). The navigation landmarks are all objects contained
in the map.

178

A. Corpora of Natural Language Directions

18.63

36.7

51.84

(a) Path length statistics (m).

33

5

(b) Number of SDCs per direc-
tion.

Figure A.5: Distribution of path lengths and number of SDCs for directions in the
complex corpus. (15 directions)

List of complex directions

Below is the complete list of 15 directions used in the complex corpus:

• go to the door across from the whiteboard.

• turn towards the trash near the stairs, turn left to the table, turn right, turn

left to the door across from the sofa.

• turn towards the door near the intersection, turn right, go to the door near the

desk.

• go through the door after the intersection.

• go past the window, go near the door that is after the whiteboard, turn towards

the mailbox.

• go to the doors near the whiteboard, go past the fountain, turn right to the

elevator.

• go to the doors near the tank, turn right, go straight to the refrigerator down

the hall.

• turn left to the trash, go through the intersection, go towards the mailbox

behind the stairs, turn right to the door near the intersection.

• go to the door after the water fountain, turn right, go straight to the cabinet.

• turn right, turn left to the phone near the door, go past the water fountain, go

179

A. Corpora of Natural Language Directions

towards the sofa behind the door.

• go towards the intersection, turn left, go through the door after the intersection,

turn left, go to the window near the sofa.

• turn towards the door after the intersection, turn left to the door near the

fountain, go to the elevator near the sofa.

• go towards the microwave after the photocopier, turn left, go to the door that

is after the whiteboard, turn left to the tank near the intersection.

• go towards the desk at the end of the hall, turn right towards the intersection,

turn towards the whiteboard near the door, go straight to the door that is after

the water fountain.

• go towards the table behind the stairs, turn right, turn left to the sofa, turn

right to the door at the end of the hall.

180

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse rein-
forcement learning. In International Conference on Machine Learning, 2004.
2.2

[2] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous Helicopter
Aerobatics through Apprenticeship Learning. The International Journal of
Robotics Research, 2010. 2.2

[3] Philip E Agre and David Chapman. What are plans for? Robotics and
Autonomous Systems, 1990. 2.1.3

[4] Abhishek Anand, Hema Swetha Koppula, Thorsten Joachims, and Ashutosh
Saxena. Contextually Guided Semantic Labeling and Search for 3D Point
Clouds. International Journal of Robotics Research, 2012. 2.5

[5] A Anderson, M Bader, E Bard, E Boyle, G M Doherty, S Garrod, S Isard,
J Kowtko, J McAllister, J Miller, C Sotillo, H S Thompson, and R Weinert.
The HCRC Map Task Corpus. Language and Speech, 1991. 2.1.1, 2.1.1

[6] Brian D. O. Anderson and John B. Moore. Optimal control: linear quadratic
methods. 1990. 2.2

[7] John R Anderson, Daniel Bothell, Michael D Byrne, Scott Douglass, Christian
Lebiere, and Yulin Qin. An integrated theory of the mind. Psychological review,
2004. 8.1

[8] Jacob Andreas and Dan Klein. Grounding Language with Points and Paths in
Continuous Spaces. In Conference on Natural Language Learning, 2014. 2.1.1,
2.1.4

[9] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A
survey of robot learning from demonstration. Robotics and Autonomous Systems,
2009. 2.2

[10] Brenna D. Argall, Brett Browning, and Manuela M. Veloso. Teacher feedback to
scaffold and refine demonstrated motion primitives on a mobile robot. Robotics
and Autonomous Systems, 2011. 2.2

181

Bibliography

[11] Chris L Baker, Joshua B Tenenbaum, and Rebecca R Saxe. Bayesian models of
human action understanding. In Advances in Neural Information Processing
Systems, 2006. 2.3

[12] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding
as inverse planning. Cognition, 2009. 2.3

[13] Chris L Baker, Rebecca R Saxe, and Joshua B Tenenbaum. Bayesian Theory of
Mind: Modeling Joint Belief-Desire Attribution. In Conference of the Cognitive
Science Society, 2009. 2.3

[14] Emanuele Bastianelli, Domenico Daniele Bloisi, Roberto Capobianco, Fabrizio
Cossu, Guglielmo Gemignani, Luca Iocchi, and Daniele Nardi. On-line Semantic
Mapping. In International Conference on Advanced Robotics, 2013. 2.5

[15] Andrea Bauer, Klaas Klasing, Georgios Lidoris, Quirin Mühlbauer, Florian
Rohrmüller, Stefan Sosnowski, Tingting Xu, Kolja Kühnlenz, Dirk Wollherr,
and Martin Buss. The Autonomous City Explorer: Towards Natural Human-
Robot Interaction in Urban Environments. International Journal of Social
Robotics, 2009. 2.1.3

[16] Joydeep Biswas. Vector Map-Based, Non-Markov Localization for Long-Term
Deployment of Autonomous Mobile Robots. PhD thesis, Carnegie Mellon Uni-
versity, 2014. 7.1

[17] Joydeep Biswas and Manuela Veloso. WiFi localization and navigation for
autonomous indoor mobile robots. In International Conference on Robotics and
Automation, 2010. 3.2

[18] Joydeep Biswas and Manuela M Veloso. Localization and Navigation of the
CoBots Over Long-term Deployments. The International Journal of Robotics
Research, 2013. 3.2

[19] Dan Bohus and Eric Horvitz. On the Challenges and Opportunities of Physically
Situated Dialog. In Dialog with Robots: AAAI Fall Symposium, 2010. 2.1.3

[20] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrish-
nan. Linear Matrix Inequalities in System and Control Theory. 1994. 2.2

[21] S R K Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Rein-
forcement learning for mapping instructions to actions. In International Joint
Conference on Natural Language Processing, 2009. 2.1.3

[22] S R K Branavan, Luke Zettlemoyer, and Regina Barzilay. Reading Between the
Lines: Learning to Map High-level Instructions to Commands. In Association
for Computational Linguistics, 2010. 2.1.3

[23] Emma Brunskill, Thomas Kollar, and Nicholas Roy. Topological Mapping
Using Spectral Clustering and Classification. In International Conference on

182

Bibliography

Intelligent Robots and Systems, 2007. 2.5

[24] Guido Bugmann, Ewan Klein, Stanislao Lauria, and Theocharis Kyriacou.
Corpus-Based Robotics: A Route Instruction Example. In Intelligent Au-
tonomous Systems, 2004. 2.1.2, 2.1.4

[25] Rehj Cantrell, Matthias Scheutz, Paul Schermerhorn, and Xuan Wu. Robust
spoken instruction understanding for HRI. In Human-Robot Interaction, 2010.
2.1.3

[26] Rehj Cantrell, Kartik Talamadupula, Paul Schermerhorn, J Benton, Subbarao
Kambhampati, and Matthias Scheutz. Tell me when and why to do it! Run-time
Planner Model Updates Via Natural Language Instruction. In Human-Robot
Interaction, 2012. 2.1.3

[27] David Chapman. Vision, Instruction and Action. PhD thesis, Massachusetts
Institute of Technology, 1990. 2.1.3

[28] David L Chen and Raymond J Mooney. Training a Multilingual Sportscaster:
Using Perceptual Context to Learn Language. Journal of Artificial Intelligence
Research, 2010. 9.3

[29] David L Chen and Raymond J Mooney. Learning to Interpret Natural Language
Navigation Instructions from Observations. In AAAI Conference on Artificial
Intelligence, 2011. 2.1.2, 2.1.4

[30] Sonia Chernova and Manuela Veloso. Confidence-Based Multi-Robot Learning
from Demonstration. International Journal of Social Robotics, 2010. 2.2

[31] Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Learning for control from
multiple demonstrations. In International Conference on Machine Learning,
2008. 2.2

[32] Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Apprenticeship learning for
helicopter control. Communications of the ACM, 2009. 2.2

[33] Brian Coltin, Joydeep Biswas, Dean Pomerleau, and Manuela Veloso. Effective
Semi-autonomous Telepresence. In Proceedings of the RoboCup Symposium,
2011. 3.2

[34] Koby Crammer and Yoram Singer. On the Algorithmic Implementation of Mul-
ticlass Kernel-based Vector Machines. Journal of Machine Learning Research,
2002. 4.1, 6.2

[35] Hal Daumé, John Langford, and Daniel Marcu. Search-based structured predic-
tion. Machine Learning, 2009. 2.2

[36] Guillaume de Chambrier and Aude Billard. Learning search polices from humans
in a partially observable context. Robotics and Biomimetics, 2014. 2.3

[37] Robert Dean. Common world model for unmanned systems. In Proc. of SPIE,

183

Bibliography

2013. 8.1

[38] Robin Deits, Stefanie Tellex, Pratiksha Thaker, Dimitar Simeonov, Thomas
Kollar, and Nicholas Roy. Clarifying Commands with Information-Theoretic
Human-Robot Dialog. Journal of Human-Robot Interaction, 2013. 2.1.3

[39] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On Sequential Monte
Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing, 2000.
5.3, 5.3

[40] Felix Duvallet and Anthony Stentz. Imitation Learning for Task Allocation. In
International Conference on Intelligent Robots and Systems, 2010. 2.2

[41] Felix Duvallet, Thomas Kollar, and Anthony Stentz. Imitation Learning for
Natural Language Direction Following through Unknown Environments. In
International Conference on Robotics and Automation, 2013. 3.1

[42] Felix Duvallet, Matthew R Walter, Thomas Howard, Jean Oh, Seth Teller,
Nicholas Roy, and Anthony Stentz. Inferring Maps and Behaviors from Natural
Language Instructions. In International Symposium on Experimental Robotics,
2014. 5, 7

[43] Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul Schermerhorn. What
to do and how to do it: Translating natural language directives into temporal
and dynamic logic representation for goal management and action execution.
In International Conference on Robotics and Automation, 2009. 2.1.3

[44] Juan Fasola and Maja J Mataric. Modeling dynamic spatial relations with global
properties for natural language-based human-robot interaction. In International
Symposium on Robot and Human Interactive Communication, 2013. 2.1.1

[45] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Language,
Speech, and Communication. 1998. 2.1.1, 3.4

[46] Dave Ferguson and Anthony Stentz. Field D*: An interpolation-based path
planner and replanner. In International Symposium on Robotics Research, 2005.
3.2

[47] David Ferguson and Anthony Stentz. Using interpolation to improve path
planning: The Field D* algorithm. Journal of Field Robotics, 2006. 3.2

[48] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 1981. 8.1

[49] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Active Markov localization
for mobile robots, 1998. 2.4

[50] Stephen Friedman, Hanna Pasula, and Dieter Fox. Voronoi Random Fields:
Extracting the Topological Structure of Indoor Environments via Place Labeling.

184

Bibliography

In International Joint Conference on Artificial Intelligence, 2007. 2.5

[51] Guglielmo Gemignani, Daniele Nardi, Domenico Daniele Bloisi, Roberto Capo-
bianco, and Luca Iocchi. Interactive Semantic Mapping: Experimental Evalua-
tion. In International Symposium on Experimental Robotics, 2014. 2.5

[52] Robert Goeddel and Edwin Olson. DART: A particle-based method for gen-
erating easy-to-follow directions. In International Conference on Intelligent
Robots and Systems, 2012. 2.1.3

[53] Dave Golland, Percy Liang, and Dan Klein. A Game-Theoretic Approach to
Generating Spatial Descriptions. Computational Linguistics, 2010. 2.1.3

[54] Stevan Harnad. The Symbol Grounding Problem. Physica D: Nonlinear
Phenomena, 1990. 2.1

[55] Sachithra Hemachandra, Thomas Kollar, Nicholas Roy, and Seth Teller. Fol-
lowing and interpreting narrated guided tours. International Conference on
Robotics and Automation, 2011. 7

[56] Sachithra Hemachandra, Matthew R Walter, Stefanie Tellex, and Seth Teller.
Learning Spatial-Semantic Representations from Natural Language Descrip-
tions and Scene Classifications. In International Conference on Robotics and
Automation, 2014. 2.5, 7.3

[57] Sachithra Hemachandra, Felix Duvallet, Thomas M. Howard, Nicholas Roy,
Anthony Stentz, and Matthew R Walter. Learning Models for Following Natural
Language Directions in Unknown Environments. In International Conference
on Robotics and Automation, 2015. 5, 7

[58] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N.
Sainath, and Brian Kingsbury. Deep Neural Networks for Acoustic Modeling in
Speech Recognition. IEEE Signal Processing Magazine, 2012. 9.3

[59] Thomas M Howard, Istvan Chung, Oron Propp, Matthew R Walter, and
Nicholas Roy. Efficient Natural Language Interfaces for Assistive Robots. In
IROS Workshop on Rehabilitation and Assistive Robotics, 2014. 5.2, 8.1

[60] Thomas M. Howard, Stefanie Tellex, and Nicholas Roy. A natural language
planner interface for mobile manipulators. In International Conference on
Robotics and Automation, 2014. 2.1.1, 2.1.4, 5.2

[61] Albert S Huang, Stefanie Tellex, Abraham Bachrach, Thomas Kollar, Deb Roy,
and Nicholas Roy. Natural Language Command of an Autonomous Micro-Air
Vehicle. In International Conference on Intelligent Robots and Systems, 2010.
2.1.1, 3.1

[62] Ray Jackendoff. Semantics and Cognition. 1983. 3.1

185

Bibliography

[63] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning
and acting in partially observable stochastic domains. Artificial Intelligence,
1998. 2.3

[64] Michael Kaess. AprilTags C++ library. http://people.csail.mit.edu/

kaess/apriltags/. 7.2, 7.3

[65] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. iSAM: Incremental
smoothing and mapping. IEEE Transactions on Robotics, 2008. 5.3

[66] Rudolf Emil Kalman. When is a linear control system optimal? Journal of
Fluids Engineering, 1964. 2.2

[67] Sertac Karaman and Emilio Frazzoli. Sampling-based Algorithms for Optimal
Motion Planning. The International Journal of Robotics Research, 2011. 3.2

[68] Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Gener-
ating Image Descriptions. Technical report, Stanford University, 2014. 9.3

[69] Scott Kiesel and Wheeler Ruml. Planning Under Temporal Uncertainty Using
Hindsight Optimization. In ICAPS Planning and Robotics Workshop, 2014. 2.3

[70] Scott Kiesel, Ethan Burns, Wheeler Ruml, J Benton, and Frank Kreimendahl.
Open World Planning for Robots via Hindsight Optimization. In ICAPS
Planning and Robotics Workshop, 2013. 2.3

[71] T Kollar and N Roy. Using reinforcement learning to improve exploration
trajectories for error minimization. In International Conference on Robotics
and Automation, 2006. 2.4

[72] Thomas Kollar. Learning to Understand Spatial Language for Robotic Navigation
and Mobile Manipulation. PhD thesis, Massachusetts Institute of Technology,
2011. 2.1.1, 3.1, 3.4, 3.4, 4.5.1

[73] Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. Toward Un-
derstanding Natural Language Directions. In International Conference on
Human-Robot Interaction, 2010. 2.1.1, 2.1.4, 3.1

[74] Thomas Kollar, Stefanie Tellex, and Nicholas Roy. A Discriminative Model for
Understanding Natural Language Route Directions. In AAAI Fall Symposium
Series, 2010. 2.1.1, 3.1

[75] Thomas Kollar, Vittorio Perera, Daniele Nardi, and Manuela Veloso. Learning
environmental knowledge from task-based human-robot dialog. International
Conference on Robotics and Automation, 2013. 2.5, 9.3

[76] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. From struc-
tured english to robot motion. In International Conference on Intelligent Robots
and Systems, 2007. 2.1.1

[77] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Translating

186

http://people.csail.mit.edu/kaess/apriltags/
http://people.csail.mit.edu/kaess/apriltags/

Bibliography

Structured English to Robot Controllers. Advanced Robotics, 2008. 2.1.1, 2.1.4

[78] Jayant Krishnamurthy and Thomas Kollar. Jointly Learning to Parse and
Perceive: Connecting Natural Language to the Physical World. Transactions
of the Association for Computational Linguistics, 2013. 9.3

[79] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems, 2012. 9.3

[80] Benjamin Kuipers. Spatial semantic hierarchy. Artificial Intelligence, 2000. 2.5

[81] Theocharis Kyriacou, Guido Bugmann, and Stanislao Lauria. Vision-based
urban navigation procedures for verbally instructed robots. Robotics and
Autonomous Systems, 2005. 2.1.2, 2.1.4

[82] Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised Feature Learning for 3D
Scene Labeling. In International Conference on Robotics and Automation, 2014.
2.5

[83] Barbara Landau and Ray Jackendoff. What and where in spatial language and
spatial cognition. Behavioral and Brain Sciences, 1993. 3.1

[84] Christian Landsiedel, Roderick De Nijs, Kolja Kuhnlenz, Dirk Wollherr, and
Martin Buss. Route description interpretation on automatically labeled robot
maps. In International Conference on Robotics and Automation, 2013. 2.1.1

[85] Stanislao Lauria, Guido Bugmann, Theocharis Kyriacou, and Ewan Klein.
Mobile robot programming using natural language. Robotics and Autonomous
Systems, 2002. 2.1.2

[86] Michael Levit and Deb Roy. Interpretation of spatial language in a map
navigation task. Systems, Man, and Cybernetics, 2007. 2.1.1, 2.1.4

[87] Constantine Lignos, Vasumathi Raman, Cameron Finucane, Mitchell Marcus,
and Hadas Kress-Gazit. Provably correct reactive control from natural language.
Autonomous Robots, 2014. 2.1.1

[88] Michael L Littman, Anthony R Cassandra, and Leslie Pack Kaelbling. Learning
policies for partially observable environments: Scaling up. In International
Conference on Machine Learning, 1995. 2.3

[89] James MacGlashan, Monica Babes-Vroman, Marie DesJardins, Michael Littman,
Smaranda Muresan, and Shawn Squire. Translating English to Reward Func-
tions. Technical report, Computer Science Department Brown University, 2014.
2.1.1

[90] James Macglashan, Michael Littman, Robert Loftin, Bei Peng, David Roberts,
and Matthew E Taylor. Training an Agent to Ground Commands with Reward
and Punishment. In AAAI Machine Learning for Interactive Systems Workshop,

187

Bibliography

2014. 2.1.1

[91] Matthew MacMahon. MARCO: A Modular Architecture for Following Route
Instructions. In AAAI Workshop on Modular Construction of Human-like
Intelligence, 2005. 2.1.2

[92] Matthew MacMahon. Following Natural Language Route Instructions. PhD
thesis, University of Texas at Austin, 2007. 2.1.2, 2.1.2

[93] Matthew MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the
Talk: Connecting Language, Knowledge, and Action in Route Instructions. In
National Conference on Artificial Intelligence, 2006. 2.1.2, 2.1.4

[94] A Makarenko, S B Williams, F Bourgault, and H F Durrant-Whyte. An
experiment in integrated exploration. In International Conference on Intelligent
Robots and Systems, 2002. 2.4, 3.2

[95] Christian Mandel, Udo Frese, and Thomas Rofer. Robot navigation based
on the mapping of coarse qualitative route descriptions to route graphs. In
International Conference on Intelligent Robots and Systems, 2006. 2.1.1

[96] Matthew Marge and AI Rudnicky. Comparing spoken language route instruc-
tions for robots across environment representations. In Proceedings of SIGdial,
2010. 2.1.3

[97] Matthew Marge and Alexander I Rudnicky. The TeamTalk Corpus: Route
Instructions in Open Spaces. In Workshop on Grounding Human-Robot Dialog
for Spatial Tasks, 2011. 2.1.3

[98] Cynthia Matuszek, Dieter Fox, and Karl Koscher. Following directions using
statistical machine translation. In Human-Robot Interaction, 2010. 2.1.2

[99] Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. Learning to
Parse Natural Language Commands to a Robot Control System. In International
Symposium on Experimental Robotics, 2012. 2.1.2, 2.1.4

[100] Çetin Meriçli, Steven D Klee, Jack Paparian, and Manuela Veloso. An Interactive
Approach for Situated Task Specification through Verbal Instructions. In
International Conference on Autonomous Agents and Multiagent Systems, 2014.
2.1.3

[101] George Miller. WordNet: An on-line lexical database. International Journal of
Lexicography, 1990. 2.1.1, 3.4

[102] Dipendra K Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell
Me Dave: Context-Sensitive Grounding of Natural Language to Manipulation
Instructions. In Robotics: Science and Systems, 2014. 2.1.3

[103] Raymond J Mooney. Learning to Connect Language and Perception. In AAAI
Conference on Artificial Intelligence, 2008. 9.3

188

Bibliography

[104] Oscar Martinez Mozos, Rudolph Triebel, Patric Jensfelt, Axel Rottmann, and
Wolfram Burgard. Supervised semantic labeling of places using information
extracted from sensor data. Robotics and Autonomous Systems, 2007. 2.5

[105] Krikamol Muandet, Bernhard Schölkopf, Kenji Fukumizu, and Francesco Din-
uzzo. Learning from Distributions via Support Measure Machines. In Advances
in Neural Information Processing Systems, 2012. 6.1

[106] R Müller, T Röfer, Axel Lankenau, A Musto, K Stein, and A. Coarse qualitative
descriptions in robot navigation. Spatial Cognition II, 2000. 2.1.1

[107] Daniel Munoz, J. Andrew Bagnell, and Martial Hebert. Stacked Hierarchical
Labeling. In European Conference on Computer Vision, 2010. 8.1

[108] Andrew Y. Ng and Stuart Russell. Algorithms for Inverse Reinforcement
Learning. In International Conference on Machine Learning, 2000. 2.2

[109] Andreas Nüchter and Joachim Hertzberg. Towards semantic maps for mobile
robots. Robotics and Autonomous Systems, 2008. 2.5

[110] Robert B Ochsman and Alphonse Chapanis. The effects of 10 communication
modes on the behavior of teams during co-operative problem-solving. Interna-
tional Journal of Man-Machine Studies, 1974. 2.1

[111] Jean Oh, Arne Suppe, Felix Duvallet, Abdeslam Boularias, Jerry Vinokurov,
Luis Navarro-Serment, Oscar Romero, Robert Dean, Christian Lebiere, Martial
Hebert, and Anthony Stentz. Toward Mobile Robots Reasoning Like Humans.
In AAAI Conference on Artificial Intelligence, 2015. 7, 8

[112] Edwin Olson. AprilTag: A robust and flexible visual fiducial system. In
International Conference on Robotics and Automation, 2011. 7.2, 7.3, 7.3

[113] Stefan Osswald, H Kretzschmar, Wolfram Burgard, and Cyrill Stachniss. Learn-
ing to Give Route Directions from Human Demonstrations. In International
Conference on Robotics and Automation, 2014. 2.1.3

[114] R Platt, R Tedrake, L Kaelbling, and T Lozano-Perez. Belief space planning
assuming maximum likelihood observations. In Robotics: Science and Systems,
2010. 2.3

[115] Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, and Russ Tedrake. Si-
multaneous Localization and Grasping as a Belief Space Control Problem. In
International Symposium on Robotics Research, 2011. 2.3

[116] Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, and Russ Tedrake. Non-
Gaussian Belief Space Planning: Correctness and Complexity. In International
Conference on Robotics and Automation, 2012. 2.3

[117] Dean Pomerleau. ALVINN: An Autonomous Land Vehicle In a Neural Network.
In Advances in Neural Information Processing Systems, 1989. 2.2

189

Bibliography

[118] S. Prentice and N. Roy. The Belief Roadmap: Efficient Planning in Belief Space
by Factoring the Covariance. The International Journal of Robotics Research,
2009. 2.3

[119] Andrzej Pronobis, O. Martinez Mozos, B. Caputo, and P. Jensfelt. Multi-modal
Semantic Place Classification. The International Journal of Robotics Research,
2010. 2.5

[120] Vasumathi Raman, Constantine Lignos, Cameron Finucane, Kenton C. T. Lee,
Mitch Marcus, and Hadas Kress-Gazit. Sorry Dave, I’m Afraid I Can’t Do That:
Explaining Unachievable Robot Tasks Using Natural Language. In Robotics:
Science and Systems, 2013. 2.1.1, 2.1.3

[121] Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum
Margin Planning. In International Conference on Machine Learning, 2006. 2.2,
4.1, 4.1, 6.2, 8.1

[122] Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. (Online)
Subgradient Methods for Structured Prediction. In International Conference
on Artificial Intelligence and Statistics, 2007. 2.2

[123] Nathan D. Ratliff, David Silver, and J. Andrew Bagnell. Learning to search:
Functional gradient techniques for imitation learning. Autonomous Robots, 2009.
2.2

[124] Nathan D. Ratliff, Brian Ziebart, Kevin Peterson, J. Andrew Bagnell, Martial
Hebert, Anind K Dey, and Siddhartha S. Srinivasa. Inverse Optimal Heuristic
Control for Imitation Learning. In International Conference on Artificial
Intelligence and Statistics, 2009. 2.2

[125] Stephanie Rosenthal, Joydeep Biswas, and Manuela Veloso. An effective personal
mobile robot agent through symbiotic human-robot interaction. In Autonomous
Agents and Multi-Agent Systems, 2010. 7

[126] Stéphane Ross and J. Andrew Bagnell. Efficient Reductions for Imitation
Learning. In International Conference on Artificial Intelligence and Statistics,
2010. 2.2, 4.3

[127] Stéphane Ross and J. Andrew Bagnell. Agnostic System Identification for
Model-Based Reinforcement Learning. In International Conference on Machine
Learning, 2012. 2.2

[128] Stephane Ross and J. Andrew Bagnell. Reinforcement and Imitation Learning
via Interactive No-Regret Learning. Technical report, 2014. 2.2

[129] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A Reduction of
Imitation Learning and Structured Prediction to No-Regret Online Learning.
In International Conference on Artificial Intelligence and Statistics, 2011. 2.2,

190

Bibliography

4.3, 6.2

[130] Stephane Ross, Daniel Munoz, Martial Hebert, and J. Andrew Bagnell. Learning
message-passing inference machines for structured prediction. In Conference on
Computer Vision and Pattern Recognition, 2011. 2.2

[131] Stephane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas
Wendel, Debadeepta Dey, J. Andrew Bagnell, and Martial Hebert. Learning
Monocular Reactive UAV Control in Cluttered Natural Environments. In
International Conference on Robotics and Automation, 2013. 2.2

[132] Stephane Ross, Jiaji Zhou, Yison Yue, Debadeepta Dey, and J. Andrew Bagnell.
Learning Policies for Contextual Submodular Prediction. In International
Conference on Machine Learning, 2013. 2.2

[133] Nicholas Roy, Wolfram Burgard, Dieter Fox, and Sebastian Thrun. Coastal Nav-
igation - Mobile Robot Navigation with Uncertainty in Dynamic Environments.
In International Conference on Robotics and Automation, 1999. 2.3

[134] Alexander I. Rudnicky. Mode preference in a simple data-retrieval task. In
Proceedings of the Workshop on Human Language Technology, 1993. 2.1

[135] Michael C. Runge, Sarah J. Converse, and James E. Lyons. Which uncertainty?
Using expert elicitation and expected value of information to design an adaptive
program. Biological Conservation, 2011. 2.4

[136] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL).
In International Conference on Robotics and Automation, 2011. 8.1

[137] Paul E Rybski, Kevin Yoon, Jeremy Stolarz, and Manuela M Veloso. Interactive
Robot Task Training through Dialog and Demonstration. In Human-Robot
Interaction, 2007. 2.1.3

[138] Nobuyuki Shimizu and Andrew Haas. Learning to follow navigational route
instructions. In International Joint Conference on Artificial Intelligence, 2009.
2.1.1, 2.1.4

[139] David Silver, J Andrew Bagnell, and Anthony Stentz. High Performance
Outdoor Navigation from Overhead Data using Imitation Learning. In Robotics:
Science and Systems, 2008. 2.2

[140] David Silver, J Andrew Bagnell, and Anthony Stentz. Perceptual Interpre-
tation for Autonomous Navigation through Dynamic Imitation Learning. In
International Symposium of Robotics Research, 2009. 2.2

[141] David Silver, J. Andrew Bagnell, and Anthony Stentz. Learning from Demon-
stration for Autonomous Navigation in Complex Unstructured Terrain. The
International Journal of Robotics Research, 2010. 2.2

[142] David Silver, J. Andrew Bagnell, and Anthony Stentz. Learning Autonomous

191

Bibliography

Driving Styles and Maneuvers from Expert Demonstration. In International
Symposium on Experimental Robotics, 2012. 2.2

[143] R Sim and N Roy. Global A-Optimal Robot Exploration in SLAM. In Interna-
tional Conference on Robotics and Automation, 2005. 2.4

[144] Dimitar Simeonov, Stefanie Tellex, Thomas Kollar, and Nicholas Roy. Toward
Interpreting Spatial Language Discourse with Grounding Graphs. In Workshop
on Grounding Human-Robot Dialog for Spatial Tasks, 2011. 3.1

[145] Reid Simmons, Dani Goldberg, Adam Goode, Michael Montemerlo, Nicholas
Roy, Brennan Sellner, Chris Urmson, Alan Schultz, Myriam Abramson, William
Adams, Amin Atrash, Magda Bugajska, Michael Coblenz, Matthew MacMahon,
Dennis Perzanowski, Ian Horswill, Robert Zubek, David Kortenkamp, Bryn
Wolfe, Tod Milam, and Bruce Maxwell. GRACE: An Autonomous Robot for
the AAAI Robot Challenge. AAAI Magazine, 2003. 2.1.3

[146] Marjorie Skubic, Dennis Perzanowski, Samuel Blisard, Alan Schultz, William
Adams, Magda Bugajska, and Derek Brock. Spatial language for human-robot
dialogs. In Systems, Man, and Cybernetics, 2004. 2.1.3

[147] Alex Smola, Arthur Gretton, Le Song, and B Schölkopf. A Hilbert space
embedding for distributions. In Algorithmic Learning Theory, 2007. 6.1, 6.1

[148] L Song, B Boots, and S M Siddiqi. Hilbert space embeddings of hidden Markov
models. In International Conference on Machine Learning, 2010. 6.1

[149] Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert space
embeddings of conditional distributions with applications to dynamical systems.
In International Conference on Machine Learning, 2009. 6.1

[150] Cyrill Stachniss, Dirk Hähnel, and Wolfram Burgard. Exploration with active
loop-closing for FastSLAM. In International Conference on Intelligent Robots
and Systems, 2004. 2.4

[151] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. Information Gain-
based Exploration Using Rao-Blackwellized Particle Filters. In Robotics: Science
and Systems, 2005. 2.4, 3.2

[152] Cyrill Stachniss, Oscar Martinez-Mozos, Axel Rottmann, and Wolfram Burgard.
Semantic labeling of places. In International Symposium of Robotics Research,
2005. 2.5

[153] Anthony Stentz. Optimal and efficient path planning for partially-known
environments. In International Conference on Robotics and Automation, 1994.
3.2

[154] Yichao Sun, Brian Coltin, and Manuela Veloso. Interruptible Autonomy: To-
wards Dialog-Based Robot Task Management. In AAAI Workshop on Intelligent

192

Bibliography

Robotic Systems, 2013. 2.1.3

[155] Leonard Talmy. The fundamental system of spatial schemas in language. From
Perception to Meaning: Image Schemas in Cognitive Linguistics, 2005. 3.1

[156] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks.
In Advances in Neural Information Processing Systems, 2003. 2.2

[157] Stefanie Tellex. Natural Language and Spatial Reasoning. PhD thesis, Mas-
sachusetts Institute of Technology, 2010. 2.1.1, 3.1, 3.4

[158] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter,
Ashis Gopal Banerjee, Seth Teller, and Nicholas Roy. Understanding Nat-
ural Language Commands for Robotic Navigation and Mobile Manipulation.
In National Conference on Articial Intelligence, 2011. 2.1.1, 2.1.4, 3.1, 8.1

[159] Stefanie Tellex, Pratiksha Thaker, Robin Deits, Dimitar Simeonov, Thomas
Kollar, and Nicholas Roy. Toward Information Theoretic Human-Robot Dialog.
In Robotics: Science and Systems, 2012. 2.1.3

[160] Stefanie Tellex, Ross A Knepper, Adrian Li, Daniela Rus, and Nicholas Roy.
Asking for Help Using Inverse Semantics. In Robotics: Science and Systems,
2014. 2.1.3

[161] M Tenorth, D Nyga, and M Beetz. Understanding and executing instructions
for everyday manipulation tasks. In International Conference on Robotics and
Automation, 2010. 2.1.3

[162] Sebastian Thrun. Toward a Framework for Human-Robot Interaction. Human-
Computer Interaction, 2004. 2.1

[163] J. van den Berg, S. Patil, and R. Alterovitz. Motion planning under uncertainty
using iterative local optimization in belief space. The International Journal of
Robotics Research, 2012. 2.3

[164] Manuela Veloso, Joydeep Biswas, Brian Coltin, Stephanie Rosenthal, Susana
Brandao, Tekin Mericli, and Rodrigo Ventura. Symbiotic-Autonomous Service
Robots for User-Requested Tasks in a Multi-Floor Building. In IROS Workshop
on Cognitive Assistive Systems: Closing the Action-Perception Loop, 2012. 3.2,
7, 7.1

[165] Deepak Verma and Rajesh P. N. Rao. Goal-based imitation as probabilistic
inference over graphical models. In Advances in Neural Information Processing
Systems, 2005. 2.3

[166] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
Tell: A Neural Image Caption Generator. Technical report, Google, 2014. 9.3

[167] Adam Vogel and Dan Jurafsky. Learning to Follow Navigational Directions.
In Association For Computational Linguistics, editor, Association for Compu-

193

Bibliography

tational Linguistics. Association for Computational Linguistics, 2010. 2.1.1,
2.1.4

[168] M. R. Walter, S. Hemachandra, B. Homberg, S. Tellex, and S. Teller. A frame-
work for learning semantic maps from grounded natural language descriptions.
The International Journal of Robotics Research, 2014. 2.5, 5.3, 9.3

[169] Tom Williams, Rehj Cantrell, Gordon Briggs, Paul Schermerhorn, and Matthias
Scheutz. Grounding Natural Language References to Unvisited and Hypothetical
Locations. In AAAI Conference on Artificial Intelligence, 2013. 2.5

[170] Terry Winograd. Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language. PhD thesis, Massachusetts
Institute of Technology, 1971. 2.1.3

[171] Brian Yamauchi. Frontier-Based Exploration Using Multiple Robots. In Inter-
national Conference on Autonomous Agents, 1998. 3.2

[172] Sungwook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati. Prob-
abilistic Planning via Determinization in Hindsight. In AAAI Conference on
Artificial Intelligence, 2008. 2.3

[173] H Zender, O Mart, P Jensfelt, G M Kruijff, and W Burgard. Conceptual Spatial
Representations for Indoor Mobile Robots. Robotics and Autonomous Systems,
2008. 2.5

[174] Brian Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K Dey. Maximum
Entropy Inverse Reinforcement Learning. In AAAI Conference on Artificial
Intelligence, 2008. 2.2

194

	1 Introduction
	1.1 Thesis Problem
	1.2 Summary of Thesis Approach
	1.2.1 Technical Formulation
	1.2.2 Thesis Statement
	1.2.3 Metrics

	1.3 Thesis Outline

	2 Background
	2.1 Natural Language Understanding for Robots
	2.1.1 Following Directions through Known Environments
	2.1.2 Following Directions through Unknown Environments
	2.1.3 Other Related Language Understanding Problems
	2.1.4 Comparison of Problem Space Features
	2.1.5 Summary

	2.2 Imitation Learning
	2.3 Belief Space Reasoning
	2.4 Active Exploration
	2.5 Semantic Mapping
	2.6 Summary of Background

	3 Following Directions in Unknown Environments
	3.1 Modeling Spatial Language
	3.2 Modeling Partially Known Environments
	3.3 Policy Representation
	3.4 Feature Representation
	3.5 Chapter Summary

	4 Imitation Learning in Unknown Environments
	4.1 Formulation as Online Learning
	4.2 Training in Unknown Environments
	4.3 Learning to Recover from Mistakes
	4.4 Computing the Expert's Policy
	4.5 Results on a Corpus of Indoor Directions
	4.5.1 Methods
	4.5.2 Quantitative Results
	4.5.3 Qualitative Results

	4.6 Chapter Summary

	5 Inferring Maps and Behaviors from Natural Language
	5.1 Overview
	5.2 Natural Language Understanding
	5.3 Semantic Mapping
	5.4 Chapter Summary

	6 Reasoning and Learning in Belief Space
	6.1 Belief Space Reasoning
	6.2 Imitation Learning in Belief Space
	6.3 Results
	6.4 Chapter Summary

	7 Integrated Demonstrations on Autonomous Indoor Robots
	7.1 Generalization to Novel Environments on CoBot
	7.2 Demonstration of Semantic Map Inference on the Husky Robot
	7.3 Demonstration of Belief Space Policy on the Autonomous Wheelchair
	7.4 Simulated Belief Space Experiments with Parameter Variation
	7.5 Discussion

	8 Integrated Demonstrations on an Autonomous Outdoor Robot
	8.1 System Overview
	8.2 Experimental Results
	8.3 Chapter Summary

	9 Summary, Contributions, and Future Work
	9.1 Dissertation Summary
	9.2 Contributions
	9.3 Future Work
	9.4 Conclusions

	A Corpora of Natural Language Directions
	A.1 Corpus of Basic Natural Language Directions
	A.2 Corpus of Complex Natural Language Directions

	Bibliography

