
Imitation Learning for Natural Language Direction
Following through Unknown Environments

Felix Duvallet
Robotics Institute

Carnegie Mellon University
felixd@cmu.edu

Thomas Kollar
Computer Science

Carnegie Mellon University
tkollar@cmu.edu

Anthony Stentz
Robotics Institute

Carnegie Mellon University
tony@cmu.edu

Abstract—The use of spoken instructions in human-robot
teams holds the promise of enabling untrained users to ef-
fectively control complex robotic systems in a natural and
intuitive way. Providing robots with the capability to understand
natural language directions would enable effortless coordination
in human robot teams that operate in non-specialized unknown
environments. However, natural language direction following
through unknown environments requires understanding the
meaning of language, using a partial semantic world model
to generate actions in the world, and reasoning about the
environment and landmarks that have not yet been detected.

We address the problem of robots following natural language
directions through complex unknown environments. By exploit-
ing the structure of spatial language, we can frame direction
following as a problem of sequential decision making under
uncertainty. We learn a policy which predicts a sequence of
actions that follow the directions by exploring the environment
and discovering landmarks, backtracking when necessary, and
explicitly declaring when it has reached the destination. We use
imitation learning to train the policy, using demonstrations of
people following directions. By training explicitly in unknown
environments, we can generalize to situations that have not been
encountered previously.

I. INTRODUCTION

As robots move out of the lab and into daily life, peo-
ple and robots are increasingly working together in shared
spaces, with common tasks and goals. These robots are be-
ginning to perform complex tasks, but the ability of untrained
people to program these robots has been limited. To address
this issue, new human-robot interaction modalities must be
developed to enable lay users to command robots. Natural
language holds the promise of enabling people to compose
and convey complex behaviors in an intuitive and flexible
way, without requiring programming knowledge, specialized
interfaces, or extensive training.

This paper addresses the problem of enabling robots to un-
derstand task-constrained natural language directions, which
requires leveraging the structure of language, mapping from
commands onto actions, recognizing diverse objects, and
reasoning about a potentially unknown goal. For example, a
first responder may want to command a rescue robot using the
language shown in Figure 1. Such commands are challenging
because they include understanding diverse landmarks (e.g.,
“the staircase” or “mailboxes”) and both actions and spatial
relationships (e.g., “around,” “go down,” “past”).

“Walk around to the other side of the staircase
and go down the hall past the mailboxes.

The room is on the left after the mailboxes.”

(a) Natural Language Command.

(b) Environment.

Fig. 1. Our goal is to take a command expressed in natural language
(e.g., 1a) and generate a sequence of actions through a partially known
environment (such as the one shown in 1b).

Although previous work [1], [2] has addressed many of
the above issues, they assumed a fully known semantic
map of the environment. This paper moves beyond these
to address partially known environments, which are more
challenging for three primary reasons that we will illustrate
using Figure 2. Firstly, the robot must take actions or reason
about landmarks that may not have realizations at the start
of execution (e.g., the elevators are not visible in Figure 2c).
Secondly, the robot must recover from failures after taking a
wrong action (the robot must recover from taking the wrong
“right turn” in Figure 2d). Lastly, the robot must decide
explicitly when to stop following the current direction (as
shown in Figure 2e). These challenges all require reasoning
about uncertainty and the parts of the environment we have
not observed.

This paper addresses the problem of learning the meaning
for words and phrases in natural language from human
demonstrations of correct behavior (e.g., grounded language
acquisition). Specifically, we frame understanding natural
language route directions as a sequential decision making
under uncertainty problem, where the aim is to learn a policy

that maps from the natural language command and a partial
map of the environment onto a sequence of actions that best
obey the command.

We will describe in Section III our approach to tractably
learn and execute the policy. First, we break down the natural
language command into linguistic clauses called Spatial De-
scription Clauses (SDCs) [1], where each SDC corresponds
to an action that the robot should execute and a landmark
that the robot should see. After describing our model for
partially known environments, we will introduce our feature
representation and the details of our policy. We then describe
how we can learn the policy using imitation learning in
Section IV, given demonstrations of people following direc-
tions. By training the policy on a partial semantic map, our
approach is able to explore partially known environments in
an informed manner, and learns to backtrack if it makes an
error.

To evaluate our approach, we have collected a dataset
of natural language commands. The task is for the robot
to navigate through one floor of an indoor building using
only partial map information. Our approach is able to fol-
low 79% of directions from a held out set of directions.
We show in Section V that successfully following natural
language directions through unknown environments requires
components that model verbs and spatial relations, identify
(approximately) what the entire action should look like, and
reason about landmarks that are likely to be similar to the
referring expressions used in natural language.

II. RELATED WORK

There exist several approaches to natural language direc-
tion following. MARCO was a system which used a hand
coded language parser along with engineered procedures
which executed actions through a simulated environment [3].
Chen and Mooney extended this work by learning a language
parser which extracted semantic structure from the language
and mapped it to actions in a fully known environment [4].
Similarly, Matuszek and colleagues learned a language parser
that could follow directions through an unknown indoor
environment [5]. These two approaches learn a mapping from
natural language to an unambiguous grammar which can be
directly mapped to actions in the world. In our work the
semantic structure must still be grounded in the environment,
as we are learning the meaning of commands directly.

The approaches presented by Kollar, Tellex, and col-
leagues [1], [6] learn groundings for language, but assume a
complete semantically labeled map is available. Although we
share their semantic descriptions (to represent the structure
of spatial language) and some of their spatial and linguistic
features (to characterize relationships between paths and
landmarks), we frame direction following using a fundamen-
tally different approach. Our system is explicitly designed
to operate in unknown environments. We represent actions
instead of complete paths, which requires reasoning about
uncertainty. By training in unknown environments, we learn
a policy which can recover from mistakes by backtracking.

We draw from work in Imitation Learning [7], specifically
maximum margin classifiers that predict a sequence of ac-
tions [8]. We use DAGGER, an imitation learning framework
which minimizes the error on the distribution of states
induced by the learned policy (instead of the distribution of
states visited by the expert) [9]. Our learning approach is
also similar to search-based structured prediction [10] and
Learning to Search [11], which learn classifiers and planners
(respectively) parameterized by cost functions.

Reinforcement learning has been applied to train a policy
to follow natural language directions for a GUI interaction
task [12], as well as navigation in the MAP-TASK cor-
pus [13]. The policy in these approaches also map states to
actions, but our work learns the policy using imitation from
expert demonstrations of correct behavior.

Our work is related to exploration strategies used for
Simultaneous Localization and Mapping [14], as we must
trade off the cost of executing actions with the cost of
gathering information. However, instead of trying to reduce
the uncertainty in the map or the robot’s pose, we are trying to
maximize the probability of correctly following the directions
while exploring the environment only as much as necessary.

III. APPROACH

Direction following is treated as a sequential decision
making process, where a policy π predicts a sequence of
actions that take the robot to a destination. Our approach uses
a class of policies that are linear the features φ of the state
and action pair, and considers all available actions (a ∈ As)
from state s, returning the one which minimizes a weighted
sum of features:

π (s) = argmin
a∈As

wTφ (s, a) (1)

By decomposing the state s into the language Z and the
semantic map M , the policy (specified by weights w) can be
re-written as follows:

π (s) = argmin
a∈As

wTφ (Z,M, a) (2)

In Section III-A we describe our model for the natural lan-
guage command Z, which is split into a sequence of semantic
clauses. Section III-B describes the partially known semantic
map M , which contains semantically labeled objects and
a graph which specifies the actions available at each state.
Section III-C describes the features φ used for training the
policy, and Section III-D brings these together to describe
how the robot follows natural language directions through
unknown environments using the policy.

A. Modeling Spatial Language

In order to understand natural language direction Z, we
leverage the properties of spatial language. Firstly, directions
are sequential: each clause in the directions refers to one
step, ordered from the start to the destination. Secondly,
spatial language decomposes into several components: verbs,
spatial relations, and landmarks. Landmarks are aspects of the
environment that are visible from the path. Verbs prescribe

D
oo

rs
Robot

Command:
“Turn right towards
the elevators and go
through the doors.”

(a) The input to the system is the
natural language command and the
initial map.

SENTENCE(
SDC(v = turn right,

r = towards,
l = the elevators),

SDC(v = go,
r = through,
l = the doors))

(b) SDCs are extracted from the com-
mand: v is the verb, r is the spatial
relation, and l is the landmark.

D
oo

rs

Start

sdc1 = SDC(
v = turn right,
r = towards,
l = the elevators)

(c) The actions available () are determined by
the frontiers nodes of the graph . The robot picks
one action and executes it ().

D
oo

rs

St
ai

rs

Start

(d) The robot turns right too early, and
then perceives stairs. It updates its se-
mantic map, but keeps track of the other
frontier available.

St
ai

rs

E
le

va
to

r

D
oo

rs

Doors

Start

(e) The robot backtracks by picking another action
(i.e. frontier), and updates its semantic map with the
new detected objects (elevator, doors).

St
ai

rs

E
le

va
to

r

D
oo

rs

Doors

Start

sdc2 = SDC(
v = go,
r = through,
l = the doors)

(f) After taking another action, the robot explicitly
declares STOP, and will then begin following the next
SDC (sdc2).

Fig. 2. Illustration of using a policy to follow natural language directions. The command (2a) is parsed into a sequence of Spatial Description Clauses
(2b), which can be understood by the robot. As the robot moves in the environment, new landmarks are perceived and the semantic map is updated (2c-2d).
Actions are paths to frontier nodes (which lie at the edge of explored space), and may represent a backtracking action (e.g., 2e). Furthermore, at each
decision point a separate STOP action (not shown) is available, which transitions to the next SDC if it exists (2f) or declares the goal has been been reached
otherwise.

what to do and where to go (e.g., “turn right”). Spatial
relations such as “past” and “towards” describe the relative
geometry between the path and the landmark.

We formalized this structure by modeling each sentence as
a sequence of structured clauses called Spatial Description
Clauses (SDCs) [1]:

Z → [sdc0, . . . , sdcN] (3)

Each SDC consists of a figure (the subject of the sentence),
a verb (an action to take), a landmark (an object in the
environment), and a spatial relation (a geometric relation
between the landmark and the figure). Any of these fields
can be unlexicalized and therefore only specified implicitly.
Figure 2b shows the sequential SDC representation for an
example sentence. Because we model directions sequentially,
we can treat direction following as a sequence of SDC-
following procedures, which decomposes into features of the
current SDC, the semantic map, and the action.

There are some sentences that do not fit into this repre-
sentation (for example nested clauses). However, SDCs do
capture the important semantics of the language, and the
sequential representation is easy to extract and efficient for
use in direction following.

B. Modeling Partially Known Environments

To represent the partially known environment, our ap-
proach uses a combined topological/metric representation
which is built online as the robot moves through the world.
A graph G = (V,E), contains vertices v ∈ V (representing

viewpoints) that are connected by edges e ∈ E which
represent allowable robot travel segments. The graph is
created incrementally by computing frontier nodes, which lie
between explored and unexplored space. As the robot moves
to a frontier node, it can see into unexplored space, which
“pushes forward” the frontiers, and adds new information to
the map used for following directions [15].

As the robot navigates in the environment, it also builds a
set of semantically labeled objects O, which consists of all
landmarks that have been previously detected. These objects
o ∈ O can be used for navigation after they have been
classified by a perception system, which semantically labels
them with a name (in addition to their geometry). Taken
together, this information (environment graph and known
objects) forms our semantic map M which gets updated
during navigation as the robot gains more information about
the environment:

M = {V,E,O} (4)

Both the semantic map M and the command Z are
contained in the state s. For any state s, the available actions
As are paths in the graph paired with a landmark from the
known object set. We only consider paths which terminate at
a current frontier node to restrict the action space and bias
towards unknown parts of the map. The object may be null,
for example when no landmark is specified or if no suitable
landmark is detected. Intuitively, an action represents one step
along the direction’s path. However, since each action reveals
new parts of the environment, they may be exploratory (for

example traveling down a hallway to an intersection), or may
represent a backtracking action (by going to a different part
of the environment). A separate STOP action moves to the
next SDC in the sequence if it exists, or declares the goal
has been reached otherwise.

The sequential decomposition (the sequence of SDCs) and
the fact that each SDC is self contained (e.g., it is indepen-
dent of the previous and next SDC) creates the following
approximation, where the policy is indexed by each SDC.
This decomposition paired with the action model described
above yields the following policy which will be used during
direction following through unknown environments:

πi (s) = argmin
a∈As

wTφ (sdci,M, a) (5)

As = {path ∈ G ∪ STOP} × O

Here, the action set As includes paths in the graph to frontier
nodes, in addition to the STOP action.

C. Feature Representation

For a given action a ∈ As, the features are computed for
a path from the start of the current SDC to the frontier node
that is being evaluated, without taking previous (potentially
backtracking) actions into account. This is to prevent back-
tracking actions from obscuring the meaningful features of
the action we wish to evaluate. For example in Figure 2, the
robot first goes into a hallway, backtracks, and then finally
takes the correct right turn. In Figure 2e we are interested
in features of the final right turn path without backtracking,
since features computed over the entire history (including
backtracking) would lose their meaning with respect to the
direction being followed.

The feature vector φ (s, a) contains several types of fea-
tures. Geometric features describe the shape of the path, the
geometry of the landmark, and the relationship between the
two [6], [16]. Linguistic features express a similarity metric
between the landmark field in the SDC and the object in the
world, and utilize WordNet (a lexical database of English
words) and a database of tagged images (extracted from
Flickr) to generalize across various landmark names [17]. We
also use the Cartesian product of the geometric and linguistic
features to represent paths and objects that occur together (for
example, turning right and seeing the elevator in Figure 2e)
instead of just matching the action or the landmark.

As we explicitly represent STOP actions, it is important
to be able to compare the features of a completed path
with its expected shape. We thus compute the distance (in
the space of geometric features) of any STOP action with
average canonical paths. The features for various canonical
paths (right turns, left turns, . . .) are computed by averaging
features of multiple paths in the corpus. These features only
apply when we stop, and ensure that the complete path (as
opposed to one individual action) is representative of the
direction as a whole before declaring that the goal has been
reached.

1: procedure FOLLOW DIR(π, Z, vstart)
2: V = {vstart}, E = ∅ . Unknown environment
3: O = ∅ . No known objects
4: M ← {V,E,O} . Semantic map
5: Z → [sdc0, . . . , sdcN] . Extract SDCs from Z
6: cur sdc← 0 . Begin with the first SDC
7: vcur ← vstart
8: repeat

B Update semantic map (graph and objects):
9: M ← PERCEIVE WORLD(M)

10: a← πcur sdc (s) . Picks action from As
11: vcur ← MOVE(a)
12: if a == STOP then
13: cur sdc← cur sdc + 1 . Follow next SDC
14: end if
15: until cur sdc > N
16: return vcur
17: end procedure

Fig. 3. Algorithm for following the directions represented by a sequence of
SDCs. We begin with a graph consisting only of our current location (vstart),
and no known objects. We then perceive the world in line 9, updating the
graph and set of landmarks. We pick an action for the current SDC, and
move in the world. If the action is a stop action (line 12), we move to the
next SDC. Once all SDCs have been followed to completion (line 15), we
have finished following the complete directions.

D. Policy Execution through Unknown Environments

Given a policy π (s) and a natural language command Z,
we can follow directions by making a sequence of decisions
(actions in the environment). This algorithm in shown in
Figure 3. We initialize our semantic map M and decompose
the directions into a sequence of SDCs. Then, beginning with
the first SDC, we iterate between observing the world (using
the robot’s onboard perception to update M) and applying the
action specified by the policy in Equation 5. When a STOP
action is returned we transition to the next SDC, or declare
that we have reached our destination if we are following the
last SDC.

IV. IMITATION LEARNING FORMULATION

The policy is trained using imitation learning, by treating
action prediction as multi-class classification problem where
we wish to correctly predict the expert’s action (out of all
possible actions). Given traces of people following directions,
we learn a policy on single-SDC segments. Unique to our
approach is the fact that we train explicitly in unknown
environments, thus learning a policy which directly takes
uncertainty into consideration. At a high level, we learn a
policy by iteratively applying the current policy and applying
corrections based on the expert demonstrations.

We assume that the expert’s policy π∗ minimizes the
unknown immediate cost C (s, a∗) of performing action a∗

from state s. Since we do not directly observe the true
costs of the expert’s policy, we must instead minimize a
surrogate loss function which will penalize disagreements
between the expert’s observed action π∗ (s) and our action
π (s). Since our policy picks a different action a 6= a∗ only if

1: procedure TRAIN POLICY(Ztrain, N)
2: Initialize π to any policy in Π parameterized by w
3: for t = 1 to N do
4: Sample a trajectory {s, π (s)} by applying current

policy to all directions.
5: Compute expert’s actions at states visited by the

current policy: a∗ = π∗ (s)
6: Minimize ` (s, a∗, w) over all examples by com-

puting ∂`/∂w.
7: Update policy according to Equation 11.
8: end for
9: return π

10: end procedure

Fig. 4. Dataset Aggregation for direction following. Each iteration
applies the policy to the all training directions Ztrain using FOLLOW DIR
(Figure 3). We then compute the expert’s demonstrated actions for all states
visited by the policy, and compute a gradient using Equation 9.

its cost wTφ (s, a) is lower than the cost of the expert’s action
(see Equation 1), we treat this as a multi-class prediction
problem, where disagreements are penalized using the multi-
class hinge loss [18]:

` (s, a∗, w)=max

(
0, 1 + wTφ (s, a∗)− min

a6=a∗

[
wTφ (s, a)

])
(6)

The loss in Equation 6 is zero when the cost of the expert’s
action is lower than the cost of all other actions with a margin
of one. If the cost of the expert’s action is more than the cost
of another action (again by a margin), the loss is positive and
follows the well-known multiclass SVM loss. This loss can
be rewritten as:

` (s, a∗, w) = wTφ (s, a∗)−min
a

[
wTφ (s, a)− lsa

]
(7)

where lsa = 0 if a = a∗ and 1 otherwise. This ensures
that the expert’s action is better than all other actions by a
margin [8]. Adding a regularization term λ to Equation 7
yields our complete optimization loss:

` (s, a∗, w)=
λ

2
‖w‖2+wTφ (s, a∗)−min

a∈As

[
wTφ (s, a)− lsa

]
(8)

Although this loss function is convex, it is not differen-
tiable. However, we can optimize it efficiently by taking the
subgradient of Equation 8 and computing action predictions
for the loss-augmented policy [8]:

∂`

∂w
= λw + φ (s, a∗)− φ (s, a′) , (9)

for the best loss-augmented action a′ at state s:

a′ = argmin
a∈As

[
wTφ (s, a)− lsa

]
. (10)

Note that a′ is simply the solution to our policy using a loss-
augmented cost. This leads to the update rule for w:

wt+1 ← wt − α
∂`

∂w
(11)

with a learning rate α ∝ 1/tγ . Intuitively, this update
decreases the cost associated with features of the expert’s

action a∗, and increases the cost associated with features of
the predicted action a′. If the expert’s action matches the
policy’s, the gradient will be zero and the weights will not
be updated (as we desire).

While minimizing Equation 8 leads to a good action
prediction from state s, it is important to note that optimizing
this loss only over the states visited by the expert may not
lead to good test-time accuracy, since the learned policy’s
predictions will affect future states and observations, which
violates the i.i.d. assumption made by most imitation learning
approaches. To give a concrete example in our setting, a
small mistake (picking the wrong door to go through) leads
to a completely different distribution of states (a different
room/hallway with different landmarks), which the learning
algorithm has not seen during training (and thus cannot
decide how to recover).

To remedy this problem, we apply DAGGER (Dataset
Aggregation) [9], which learns a policy by iterating between
collecting data (using the current policy) and applying ex-
pert corrections to the decisions that were made (using the
expert’s demonstrated policy). Using this method, we learn a
policy that does well on the distribution of states induced by
the learned policy, instead of only the distribution of states
visited by the expert. Figure 4 describes how we collect
data to train our policy. This approach to learning a policy
is simple, elegant, and requires no complex engineering of
components or tuning of parameters.

V. EXPERIMENTS AND RESULTS

We have evaluated our approach on a map of one floor
in an indoor building introduced by Kollar et al. [1], which
contains an occupancy grid and semantically labeled objects.
A corpus of 30 directions was created for this problem.
Each direction consists of multiple SDCs (2.5 on average),
and travels a large distance through the map (28.8 m on
average). The directions include multiple verbs (“turn right,”
“go straight,” . . .), spatial relations (“towards,” “past”), as
well as a variety of landmarks. Some of the landmarks
referenced in the direction are not directly contained in the
environment map; for example a “couch” or “seat” in the
directions may refer to a “sofa” in the environment.

Our policy currently operates in simulation, so we have
abstracted perception to track only objects which are visi-
ble (connected by line-of-sight and within some maximum
distance threshold). Training in a simulated environment
(while still observing all visibility constraints) enables us to
learn a policy efficiently, as running multiple iterations in
the real world would be time consuming. In the following
experiments, we trained the policy using N = 25 iterations
of DAGGER.

We first evaluated various configurations of our approach
on a test set of directions, retraining for each configuration.
We split the corpus so that directions starting to the left of
a particular point were in the training set, and the rest of
the directions were held out for a test set, which resulted
in 16 training directions and 14 test directions. The results
shown in Table I include the mean distance error (over

TABLE I
VALIDATION RESULTS ON HELD OUT SET OF DIRECTIONS.

Configuration Mean error Success rate*

Complete trained policy 2.39 m 79 %

Full semantic map 3.35 m 85 %

No semantic sim. feats. 4.44 m 64 %

No stop action feats. 7.15 m 50 %

No verbs or spatial rels. 16.56 m 36 %

Supervised learning† 7.38 m 71 %

Random destination‡ 32.79 m 5 %
∗ Percentage of directions which finish within 5 m of the destination.
† Training only on states visited by expert demonstration.
‡ Expected results for a random vertex (assuming complete graph

knowledge).

all test directions) as well as the percentage of directions
which ended within 5 m of the intended destination (our
success metric). Over the test directions, our trained policy
correctly follows 79 % of the directions with an average
ending distance from the true destination of 2.39 m.

Interestingly, providing the full semantic map (i.e. remov-
ing the visibility constraints) had mixed (but slight) impact
on performance, increasing both distance error and success
rate. We believe this is because there is a disconnect between
having to reason about local actions (incremental steps on the
current SDC) while being able to “use” objects that would
otherwise be invisible. In some sense, the visibility con-
straints makes the policy’s decision easier by only allowing
a few landmarks to be considered at a time.

Removing linguistic features that relate semantic similarity
of landmarks decreases performance, since the policy can not
generalize across different landmark names. The stop action
features are a significant component, as without them the
policy cannot compare the final action with a canonical repre-
sentation of the desired path, and stops too early. Performance
decreases most drastically if we remove the verbs/spatial
relations, as the policy can no longer differentiate between
the various commanded actions. Overall, these results demon-
strate that direction following requires an understanding
of actions (verbs), semantic similarity (landmarks), and an
explicit way to reason about stopping.

For comparison, we trained the policy using a traditional
supervised learning approach, by learning a policy using only
the states visited by the expert’s demonstration. Although this
policy reached the goal 71 % of the time, the mean error was
much higher due to some very large errors in a few directions
where un-recovered mistakes occurred. This demonstrates the
ability of our approach to learn a policy which generalizes
to new directions and can backtrack when the current action
does not match the direction being followed.

We also performed a cross validation experiment, where
we randomly split the corpus into the same number of testing

0 2 4 6 8 10 12 14 16
0

10

20

(a) Mean ending distance error (m)

C
ou

nt

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

(b) Success rate (5 m threshold)
C

ou
nt

Fig. 5. Histograms of results (mean ending distance error and success rate)
for 150 cross-validation trials using the complete trained policy.

and training directions as above, then learned a policy and
evaluated it on the test set. The results shown in Figure 5
present the overall average ending distance and success rate
for 150 trials. One particular held out test direction is shown
in Figure 6, showing how partial information is used when
available. The command (“turn right to the whiteboard, go
past the water fountain, go to the couch.”) is followed as best
as possible using landmarks as they are detected. The policy
initially makes an error in the first SDC, but backtracks and
recovers to follow the direction correctly.

VI. CONCLUSIONS AND FUTURE WORK

This work enables robots to autonomously follow natu-
ral language directions through unknown environments. By
exploiting properties of spatial language, we are able to
extract a sequence of semantic structures (Spatial Descrip-
tion Clauses) which encode the information necessary for
direction following. We have framed direction following as a
sequential decision making under uncertainty problem, which
enables us to learn a policy that explores the environment,
backtracks when necessary, and explicitly declares when the
destination has been reached. We learn this policy using
imitation learning, given demonstrations of people following
directions. Our results demonstrate that natural language
direction following through unknown environments requires
understanding verbs, detecting similar landmarks in the en-
vironment, and reasoning explicitly about stopping.

This work is one step towards intuitive command of
complex robotic systems. Future work will include evalu-
ating our approach on a larger corpus of directions, and

(a) Starting at the blue square, the policy first goes
straight and explores to find a whiteboard.

Whiteboard

(b) Policy finds the whiteboard but makes a wrong
turn.

(c) Policy backtracks to the correct hallway, calls
the STOP action, and moves to the next SDC.

Water
Fountain

(d) Following the second SDC. A water fountain
is perceived, and the policy goes towards it.

(e) A second water fountain is perceived. The
policy considers the current SDC to be completed,
calls STOP, and transitions to the third SDC.

Sofa

(f) A sofa is found, and is associated with the
“couch” from the SDC’s landmark field. The
policy once again calls STOP, and is now done
following the directions.

Fig. 6. Sequence of decisions for following the direction “turn right to the whiteboard, go past the water fountain, go to the couch.” The actions and
landmarks associated with each SDC are color-coded. The policy explores (looking for landmarks), backtracks if it makes an error (as in 6c), and transitions
between SDCs using the STOP action. Not all decisions are shown.

applying it to a robot operating autonomously in an indoor
environment. Reasoning in belief space and transitioning
probabilistically between actions would improve the direction
following policy, by enabling us to backtrack between SDCs
and reason about uncertainty over the entire direction which
would prevent small mistakes from compounding.

To resolve more complex forms of ambiguity and missing
information (e.g., incorrect directions, missing landmarks,
incomplete perception, etc. . .), we will evaluate using dia-
logue to “close the loop” on direction following. By asking
questions, robots can begin to learn recovery strategies for
dealing with these (and other) types of errors.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Alexander Grubb and
Stefanie Tellex for their contributions to our early direction
following work and providing access to the spatial fea-
tures library. We have appreciated valuable discussions with
Stéphane Ross and Drew Bagnell, as well as the comments
from the anonymous reviewers. This work was supported in
part by ONR under MURI grant “Reasoning in Reduced
Information Spaces” (no. N00014-09-1-1052) and by the
National Science Foundation under a Graduate Research
Fellowship and grant IIS-1218932.

REFERENCES

[1] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward Understanding
Natural Language Directions,” in International Conference on Human-
Robot Interaction, 2010.

[2] T. Kollar, “Learning to Understand Spatial Language for Robotic Nav-
igation and Mobile Manipulation,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2011.

[3] M. MacMahon, B. Stankiewicz, and B. Kuipers, “Walk the Talk:
Connecting Language, Knowledge, and Action in Route Instructions,”
in National Conference on Artificial Intelligence, 2006.

[4] D. L. Chen and R. J. Mooney, “Learning to Interpret Natural Language
Navigation Instructions from Observations,” in AAAI, 2011.

[5] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to
Parse Natural Language Commands to a Robot Control System,” in
International Symposium on Experimental Robotics, 2012.

[6] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee,
S. Teller, and N. Roy, “Understanding Natural Language Commands
for Robotic Navigation and Mobile Manipulation,” in National Con-
ference on Articial Intelligence, 2011.

[7] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, 2009.

[8] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum Margin
Planning,” in International Conference on Machine Learning, 2006.

[9] S. Ross, G. J. Gordon, and J. A. Bagnell, “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning,” in
International Conference on Artificial Intelligence and Statistics, 2011.

[10] H. Daumé, J. Langford, and D. Marcu, “Search-based structured
prediction,” Machine Learning, 2009.

[11] N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to Search:
Functional Gradient Techniques for Imitation Learning,” Autonomous
Robots, 2009.

[12] S. R. K. Branavan, H. Chen, L. Zettlemoyer, and R. Barzilay, “Re-
inforcement Learning for Mapping Instructions to Actions,” ACL-
IJCNLP, 2009.

[13] A. Vogel and D. Jurafsky, “Learning to Follow Navigational Direc-
tions,” ACL, 2010.

[14] C. Stachniss, G. Grisetti, and W. Burgard, “Information Gain-based
Exploration Using Rao-Blackwellized Particle Filters,” in Robotics:
Science and Systems, 2005.

[15] B. Yamauchi, “Frontier-Based Exploration Using Multiple Robots,” in
International Conference on Autonomous Agents, 1998.

[16] S. Tellex, “Natural Language and Spatial Reasoning,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, 2010.

[17] T. Kollar and N. Roy, “Utilizing object-object and object-scene context
when planning to find things,” in International Conference on Robotics
and Automation, 2009.

[18] K. Crammer and Y. Singer, “On the Algorithmic Implementation
of Multiclass Kernel-based Vector Machines,” Journal of Machine
Learning Research, 2002.

	I Introduction
	II Related Work
	III Approach
	III-A Modeling Spatial Language
	III-B Modeling Partially Known Environments
	III-C Feature Representation
	III-D Policy Execution through Unknown Environments

	IV Imitation Learning Formulation
	V Experiments and Results
	VI Conclusions and Future Work
	Acknowledgments
	References

