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Abstract—The increased popularity of wireless networks has
enabled the development of localization techniques that rely on
WiFi signal strength. These systems are cheap, effective, and
require no modifications to the environment. In this paper,
we present a WiFi localization algorithm that generates WiFi
maps using Gaussian process regression, and then estimates
the global position of an autonomous vehicle in an industrial
environment using a particle filter. This estimate can be used
for bootstrapping a higher-resolution localizer, or for cross-
checking and localization redundancy. The system has been
designed to operate both indoors and outdoors, using only the
existing wireless infrastructure. It has been integrated with an
existing laser-beacon localizer to aid during initialization and for
recovery after a failure. Experiments conducted at an industrial
site using a large forklift-type autonomous vehicle are presented.

I. I NTRODUCTION

As autonomous vehicles play more prominent roles in
industrial environments, the importance of accurately deter-
mining the location of the vehicle in the environment becomes
increasingly crucial. For safe and reliable performance, an
autonomous vehicle should not rely on a single localization
solution alone, as a failure at a critical point could bring
down the entire system. Thus, there is a need for redundant
position estimators that can be utilized in the event of a
failure in a primary localization subsystem. There are many
available approaches for vehicle localization including using
GPS, artificial or natural landmarks, and visual maps. How-
ever, many of these approaches require expensive equipment
or considerable effort in sensor processing or environment
modeling.

In contrast, WiFi devices are cheap, lightweight, and rel-
atively low-power [1], and WiFi access points are becoming
increasingly ubiquitous in many of the environments robots
operate in (offices, schools, industrial work-sites). A WiFi
localizer can be an integral part of a robust navigation system
as it has several advantages:

• It is an efficient method for global localization since
access points are uniquely identifiable;

• WiFi can be used to localize both indoors and outdoors;
• No modifications to the environment are required, instead

relying on the existing infrastructure;

• Completely passive localization is possible by “sniffing”
wireless traffic; and

• WiFi signals do not require line-of-sight. As such, they
can be used even in the presence of obstructions that
would block laser range-finders or cameras.

In this paper, we utilize an existing 802.11 wireless infras-
tructure to estimate the location of an autonomous vehicle
within an industrial environment. Although WiFi localiza-
tion has been used extensively in the literature for person
tracking [2] and location-aware computing [3], it is unclear
whether a WiFi localization system alone will ever provide
the accuracy required for autonomous vehicles operating in
industrial environments. However, as a secondary localization
system, WiFi signal strength information can be used to
generate a coarse global position estimate which can be used
to bootstrap the primary system.

Although GPS can sometimes provide this secondary esti-
mate, coverage is often unavailable inside buildings or when
the view of the sky is obstructed, and incorrect estimates can
occur due to multipathing. Durrant-Whyte et al. have deter-
mined that the physics of GPS, combined with insufficient
coverage in Australia, prevent it from being reliable enough
to be used as a stand-alone navigation sensor in industrial
scenarios [4].

We have designed the WiFi position estimator for use in
one of several scenarios. Firstly, it can be used as an initial
estimate during the initialization of a primary localization
system. This can speed up early convergence and reduce
the possibility of multiple hypotheses due to environment
symmetries. Secondly, the WiFi localizer can be polled when
the primary localizer’s confidence drops below a threshold,
indicating that it may be lost. In this case, the WiFi localizer
can again provide a position estimate to re-seed the local
position estimator. Lastly, the estimate from the WiFi localizer
can be used as an independent estimate to detect possible
anomalies occurring in other localization systems.

Our approach to WiFi localization is based on the work
of Ferris, Ḧahnel, and Fox [5] and is tailored to industrial
environments. The two main components of the WiFi lo-
calization system are a WiFi map generated using Gaussian
processes, and a localizer which uses Bayesian filtering. The
resulting system is analyzed against ground truth measure-



Fig. 1. The autonomous Hot Metal Carrier (HMC)

ments to determine the expected accuracy. Finally, the system
is integrated with an existing laser-beacon localizer to provide
an estimate used during initialization or after a failure inthe
primary localizer.

Our paper continues as follows: Section II discusses related
WiFi-based localization research, and Section III briefly
describes Gaussian process regression. Sections IV and V
discuss the mapping and localization phases, respectively. We
present experimental results in Section VI, and finally close
with a discussion of our future plans and some conclusions.

II. RELATED WORK

Due to the relatively coarse accuracy of most existing WiFi
position estimation systems, many have been designed with
smart environments and context-aware computing in mind.
Two broad categories of localization systems using WiFi
signal strength have emerged (algorithms using other features
such as time or angle of arrival are not covered here for
brevity):

• Modeling, in which an explicit model of the expected
signal strength is determined.

• Mapping, where labeled training data is gathered to
generate a map which is used during localization.

Although systems based on modeling methods have shown
to be effective at determining a user’s location [3], [6], they
often rely on extensive knowledge of the environment (such as
Access Point positions or the location and number of walls)
to predict the signal strength [7], [8]. In one approach, the
parameters of the proposed signal strength attenuation model
are empirically determined, and this information is used to
triangulate the user’s position around a university campus[3].

Mapping methods introduce a calibration step, where la-
beled data is gathered prior to the system’s operation. Various
properties of the received signal can be stored for use during
localization, including raw signal strength [2], histograms [9],
and Gaussians [1]. For example, one approach exhaustively
compares the input signal strength against the training data for
all locations to determine a set of nearest neighbors, which
are interpolated to generate a position estimate [2].

Given enough training measurements and even coverage,
the mapping-based methods are generally quite accurate, and
have the advantage of using empirical data which may be
hard to model using analytical models. However, some of

the calibration methods presented require an extensive data
collection step. In one approach, WiFi data is gathered every
few meters in four different orientations [2].

We wish to take advantage of the benefits that the mapping
methods provide without a need for an intensive data col-
lection process. Fortunately, Gaussian process-based mapping
methods provide a solution to this problem (as well as many
others). Several signal strength-based localization systems
that utilize Gaussian processes have already been developed,
and this method has proved to be very well-suited for the
problem domain [5], [10]. Gaussian processes (GP) and their
advantages are introduced in the next section.

III. G AUSSIAN PROCESSREGRESSION

Gaussian processes offer many advantages that make them
suited for a localization system that utilizes WiFi signal
strength [5]. Firstly, they are non-parametric, so a model
that can correctly fit the data is not required [11]. Because
GPs place a prior over the distribution of functions, many
highly non-linear models can emerge from GP regression [11].
Secondly, they are continuous. Training data does not need
to be gathered at regularly spaced intervals, nor does the
environment necessarily need to be discretized during local-
ization. Training data can come from arbitrary points, and
predictions can be generated for any point in the environment.
Furthermore, the predictions will use a maximal amount
of the training information, as opposed to a small number
neighbors [11]. Thirdly, GPs correctly handle uncertaintyin
both the process and the estimation. This is especially useful
because WiFi signal strength measurements are very noisy
due to various phenomena such as diffraction, scattering,
reflection, and absorption [8].

A Gaussian process essentially defines a probability dis-
tribution over functions. We wish to generate a function
f(x∗) that makes predictions for all possible inputsx∗.
We use a training data setD = {(xi, yi) |i = 1, . . . , n}
consisting ofn observations inRd drawn from a noisy process
yi = f (xi)+ ε, whereε is additive Gaussian noise with zero
mean and varianceσ2

n. For notational simplicity, the inputs of
the training set are grouped into ad × n matrix X, and the
observationsyi are grouped into a vectory.

To generatef(x∗), GPs rely on a covariance function kernel
k (xp,xq) that specifies how the values at different points are
correlated. Generally, points with inputsx that are close to
each other are likely to have similar target valuesy. The user
has many choices for this kernel (see [11] for examples), and
we have chosen the popular squared exponential kernel:

k (xp,xq) = σ2

f exp

(

−
1

2
(xp − xq)

TM (xp − xq)

)

, (1)

whereM is a matrix whose diagonal elements are set to the
respective length scales (ℓi): M = diag (ℓ)

−2. The hyperpa-
rametersσ2

f and ℓ are the signal variance and characteristic
length scales, respectively.



Fig. 2. Signal strength mean prediction – eq. (4b).

Becausey is actually a noisy observation of the true value
f(x), we must add a term to account for observation noise in
the covariance function:

cov (yp, yq) = k (xp,xq) + σ2

nδpq (2)

where δpq is 1 if p = q and 0 otherwise. Note that the
covariance between the outputs is written as a function of the
inputs, emphasizing the non-parametric nature of Gaussian
process regression.

Again for notational convenience, we rewrite the covari-
ances as matrices and vectors, such thatK is a matrix of the
covariances evaluated at all pairs of training points, andk∗

is a vector of the covariances betweenx∗ and then training
inputs. This compact form allows us to rewrite equation (2)
into:

cov(y) = K + σ2

nI (3)

We can then generate the posterior distribution over func-
tions for arbitrary pointsx∗ given the training dataX and
y:

p(f (x∗) | x∗,X,y) ∼ N
(

µx∗
, σ2

x∗

)

,with (4a)

µx∗
= kT

∗

(

K + σ2

nI
)

−1

y (4b)

σ2

x∗

= k (x∗,x∗) − kT

∗

(

K + σ2

nI
)

−1

k∗ (4c)

This distribution provides us with the necessary likelihood
model that will be used for localization in Section V.

Because the covariance function is such an integral part of
GP regression, thed + 2 free hyperparameters (σ2

f , σ2

n, and
ℓ = {ℓ1...d}) greatly affect the characteristics of the predicted
signal. Fortunately, these hyperparameters can be learnedby
maximizing the log marginal likelihood of the observations
conditioned on the hyperparameters [11].

IV. GAUSSIAN PROCESSES FORWIFI MAP CREATION

To create a WiFi map, we must first collect our training
sampleD, consisting of signal strength measurements (y) as-
sociated with positions in the environment (x). These training
points need not be grid aligned or sampled in any specific way,
which enables us to gather the data required to train a map
during normal vehicle operation. However, any remote areas
that will be of interest during localization should be covered
(at least partially); a simple user check of the training data is
sufficient to determine adequate map coverage.

Fig. 3. Signal strength variance prediction – eq. (4c).

The map is learned off-line. Although the MAC address
of each Access Point (AP) is known, its location is not used.
The parameters of the Gaussian process are learned, and signal
strength estimates are generated for a uniformly-spaced grid
of points in the environment. This process is repeated once for
each access point (GP parameters are re-learned for each AP
to account for differences between them), generating as many
maps as there are detected access points in the environment.
Although this map-making process is relatively slow (a few
hours on a standard desktop computer), it is performed off-line
and only done once. An example WiFi map for one access
point is shown in Fig. 2 (mean), and Fig. 3 (variance). As
expected, the mean generates a prediction for signal strength,
and the variance is lower in areas where more training data
was available.

V. SEQUENTIAL MONTE CARLO LOCATION ESTIMATION

The localization system uses a Sequential Monte Carlo
Localization algorithm [12] consisting of 1000 particles which
are initially distributed uniformly at random over the en-
tire environment. Only particle positions are tracked, as
signal strength from an omnidirectional antenna does not
provide bearing information. During localization, incoming
WiFi packets change the likelihood of all particles. For each
particle, the predicted signal strength mean and variance
are extracted from the generated map associated with the
corresponding access point. These are used to calculate the
measurement likelihood:

p (zt|x∗) ∝
1

√

2πσ2
x∗

exp

(

−
(zt − µx∗

)
2

2σ2
x∗

)

, (5)

where zt is the received signal strength at timet, and µx∗

and σ2

x∗

are the mean and variance at positionx∗ predicted
by equation (4).

In this analysis, we have chosen not to use vehicle motion
information under the assumption that for our generic WiFi
localization system, this information may not be available.
Therefore, in order to keep our WiFi-based system com-
pletely independent, the motion model is instead replaced
by random particle motion. Periodically, each particle is
randomly perturbed, effectively spreading the particle cloud
in all directions. Although some of the particles are moving
in the opposite direction to the vehicle’s actual motion, in



Fig. 4. Map of the test site, spanning approx. 250m by 400m. Access points
locations are shown with black diamonds.

practice, WiFi packets are received often enough that the
likelihood model combined with particle resampling correctly
track the vehicle location.

The system also needs to be robust to the kidnapped robot
problem. Although it is unlikely that anyone will try to kidnap
a 20-ton industrial vehicle, there can be cases where WiFi
information may not be available for a period of time, or the
WiFi location estimate could be incorrect. For this reason,
a small number of particles are randomly dispersed in the
environment instead of being propagated. These particles are
usually discarded during the next evaluation step, but they
are critical for the robustness of the WiFi position estimation
system.

VI. EXPERIMENTAL RESULTS

We have conducted experiments to evaluate the accuracy of
the WiFi-based localization system alone, and we have also
integrated it with an existing localization system so that it can
be used during initialization or for failure recovery. We present
two experiments in this section. The first is a demonstration
of the WiFi localizer accuracy. After generating a map using
training data and GP regression, the WiFi localization system
is tested and compared against ground truth data obtained
from a highly precise laser-beacon localizer. In the second
experiment, we purposefully create faults in the laser localizer
and autonomously use the global WiFi position estimate as a
seed for the laser localizer to re-initialize itself.

A. Experimental Setup

The test area is an industrial work site approximately 250m
by 400m (shown in Fig. 4) which is part of the Queensland
Center for Advanced Technologies (QCAT). Two types of
buildings are situated on site: multi-storied offices and large
industrial sheds. There is also an area without buildings
surrounded by vegetation. Industrial vehicles such as forklifts
and trucks operate on the roads around the site, and there is
also considerable pedestrian traffic.

A wireless network consisting of many different access
points provides continuous network access to QCAT staff
and mobile robots over the entire site. The majority of the
access points are located indoors for good coverage in the
offices (although those APs can still be detected outdoors),
and there are also several access points located outdoors at

strategic locations. Most access points are omnidirectional,
while some are directional to cover narrower regions such as
along roadways.

In both experiments, the site has been partitioned into three
areas with distinct features based on environment type and
WiFi coverage.

• Area 1 consists of a large open area surrounded by
industrial sheds, one of which the vehicle can drive
inside. Several access points are in this region, including
several outdoor omnidirectional access points.

• Area 2 consists of a road with buildings on both sides.
Although many access points are in this area, most are
indoors and do not offer a wide coverage area. GPS
reception is poor in this area due to a very narrow view
of the sky and multipathing from buildings.

• Area 3 consists of a road surrounded by vegetation. Very
few wireless access points are in this area, but there are
several directional access points that cover the road only.
GPS reception in this area is generally reliable.

The primary test vehicle is the Hot Metal Carrier (HMC),
a 20-ton forklift-type vehicle (shown in Fig. 1) that has been
automated by the Autonomous Systems Lab at CSIRO [13].
This type of vehicle is used in aluminum smelters, where it
transports molten aluminum in a large metal crucible. This
crucible weighs two tons and can transport eight tons of
molten aluminum at 700°C. Because the vehicles are perform-
ing this task repeatedly, they are a prime target for automation.
However, because a potentially non-localized vehicle presents
obvious safety risks, the reliability of the localization system
is of critical importance.

A laser beacon-based localization system for the HMC was
previously developed and found accurate to well within a
meter [13]. It utilizes reflective beacons that are installed
in the environment at surveyed locations. The laser-beacon
localizer does not search the global space to find possible
locations, and it requires an initial estimate of its location
upon start-up (which may occur inside or outside a shed).
It may also require re-initialization if it becomes lost. The
WiFi localizer is ideally-suited to aid the laser system in these
situations as it does not share any common failure modes.

WiFi signal strength is acquired using a laptop equipped
with a PCMCIA Netgear WiFi card. The card has been
modified to use an external omnidirectional antenna which
is mounted on the top of the HMC. Kismet [14], used in
its passive mode, sniffs wireless packets’ MAC addresses
and signal strengths, passing this information to the localizer.
DDX, a distributed shared memory architecture, is used to
share information between the various software systems on
the vehicle [15].

In our experiments, the vehicle was driven manually to
gather WiFi data for the mapping and localization data sets.
Although both cover the same general regions (roads and
sheds), the two data sets were taken many days apart and at
different times of the day. Additionally, the exact path taken



TABLE I
WIFI LOCALIZATION ACCURACY

Area
Localizer Error (m) Median num.

of visible APs
Distance
traveled (m)

Time
(sec)Mean Median

1 7.4 5.7 3 113 137

2 7.8 5.4 5 220 230

3 22.3 13.5 3 338 270

was slightly different, as the vehicle could have been driving
on the opposite side of the road or in the opposite direction
that the training data was collected. However, because of the
continuous nature of the GP regression, this does not greatly
affect us.

B. WiFi Location Estimation Accuracy

For each of the three areas defined in Section VI-A, WiFi
data was collected using the HMC. The accuracy of the
localizer is examined in each of the three regions, and is
summarized in Table I. The WiFi localizer estimate is taken as
the mean of the particles, and ground truth is obtained using
the laser localizer. The WiFi localizer error is computed ata
rate of approximately 60Hz using the Euclidean distance as
the error metric. The approximate distance traveled is reported
(taken from wheel odometry), as well as the time of each run.
During each of the three data runs, the vehicle was stopped
once or twice.

The mean and median of the position errors vary in each
region. This is due to the nature and distribution of the access
points available in each of the three regions. For example,
Area 1 contains several omnidirectional access points located
on top of buildings. A histogram of the errors in Area 1 is
shown in Fig. 5. Area 2 has a large number of access points,
but many are within buildings, greatly reducing their range.
Area 3 has the greatest error of the three regions. We suspect
this is because the access points in this region are spaced
far apart and directional. However, because Area 3 has few
buildings and other obstructions, GPS is readily available. In
the event that a secondary position estimate is required, GPS
can be used instead of the WiFi-based estimate.

The number of visible access points is tracked by determin-
ing how many unique APs in the map have been detected (sent
a packet) at least once in the past 3 seconds. This changes
over time and is correlated with the properties of the different
regions. Fig. 6 shows a histogram of the number of visible APs
during a run in Area 2. In most cases, the localizer is more
accurate when more access points are visible. Note that thisis
not due to triangulation (which would be used in a modeling
technique), but the fact that the likelihood models complement
each other. In practice, an accurate location estimate can be
achieved using two or three access points.

C. System integration

The global WiFi position estimator has been integrated
with the laser-beacon localizer on the HMC. In the event of
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Fig. 5. Histogram of the mean error in Area 1
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Fig. 6. Histogram of the number of simultaneously visible distinct access
points in Area 2 (using a three-second window)

a localizer failure (which can be triggered manually during
testing), the laser localizer uses the global estimate fromthe
WiFi system as a seed for an initial estimate region in which to
search. The laser-localizer particles are uniformly distributed
around the seed point (vehicle headings are randomly assigned
since no heading information is provided by the WiFi system),
where the size of the region is specified by the WiFi system’s
localization uncertainty. This uncertainty is inversely propor-
tional to the product of the number of visible access points
and the accepted packet rate.

In the next experiment, the laser-beacon localizer was set
to an erroneous location and the WiFi localizer was used to
bootstrap it back to the approximately correct area where it
could re-localize. A time sequence of the event is shown in
Fig. 7. The laser localizer also uses a particle filter which
is shown in red in the figure. Initially, a failure is induced
by moving the particles to a constrained region (the square)
in Fig. 7(a). In Fig. 7(b), bootstrapping has occurred and
particles are moved to a new seed area distributed around the
WiFi position estimate. In Figs. 7(c) and 7(d), the vehicle
has moved and the laser localizer has locked onto the correct
vehicle location.

This simple example demonstrates how the bootstrapping
process works. We have conducted many successful trials of
this technique onboard the HMC which removes the constraint
of having ana priori location estimate for seeding the laser-
beacon localizer, or having to wait for the system to converge
if the particles are initialized over the entire environment. In
environments with high symmetry, convergence may not occur
without a global position estimate. Fast and accurate con-



(a) Localizer failure (triggered) (b) WiFi estimate merged (c) Bootstrapping in progress (d) Laser localizer converged

Fig. 7. Time sequence of a re-initialization in Area 1. The HMC(marked with an ’X’) is moving towards the right of the compound.The WiFi localizer
estimate is shown as the large diamond, and the laser-beacon localizer particles are shown in red. The grid spacing is 10m.

vergence is necessary for autonomous vehicles operating in
industrial environments, since they should not move without
knowledge of their position.

Although the laser localizer generally converges very
quickly, there are cases where the bootstrapping can fail.
These are usually due to the inherent limitations of the laser-
beacon system, such as when a small number of beacons are
detected, or when the environment is symmetric with respect
to orientation (for example, a road with very regular beacon
placements). If the localizer fails to converge, a new WiFi
estimate can be used for re-initialization once again.

VII. C ONCLUSIONS ANDFUTURE WORK

We have demonstrated a mapping-based WiFi position esti-
mation system that can be used either independently or as an
extra layer for another higher-resolution localizer. Initially, the
mapping phase uses a set of labeled training data and Gaussian
process regression to create WiFi maps. The localization phase
uses these maps as the sensor likelihood model for the particle
filter (with signal strength as the only sensor input).

The WiFi system has been demonstrated on an autonomous
Hot Metal Carrier in an industrial environment. The system
has been integrated with the existing localization infrastruc-
ture so that it can provide a global estimate during (re-
)initialization, or resolve ambiguities due to environment
symmetries. Furthermore, the results of the two localization
solutions can be cross-checked to increase redundancy. The
lack of common failure modes in the two systems increases
the fault tolerance of the overall system.

Future work on the localization system will focus on refin-
ing the integration of the WiFi localizer and the laser localizer,
so as to provide as much redundancy as possible. Additionally,
we will investigate methods to continuously adjust the map
during localization to offset long-term changes in the wireless
network. This would make the WiFi localization system robust
to changes in building and wireless infrastructure.
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