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Abstract—The increased popularity of wireless networks has ~ « Completely passive localization is possible by “sniffing”
enabled the development of localization techniques that rely on wireless traffic; and

WiFi signal strength. These systems are cheap, effective, and | WiFi signals do not require line-of-sight. As such, they

require no modifications to the environment. In this paper, b d in th f obstructi that
we present a WiFi localization algorithm that generates WiFi can be used even In the presence of obstructions tha

maps using Gaussian process regression, and then estimates ~ Would block laser range-finders or cameras.
the global position of an autonomous vehicle in an industrial  In this paper, we utilize an existing 802.11 wireless infras
environment using a particle filter. This estimate can be used trycture to estimate the location of an autonomous vehicle

for bootstrapping a higher-resolution localizer, or for cross- S : - . - .
checking and localization redundancy. The system has beenW|th|n an industrial environment. Although WiFi localiza

designed to operate both indoors and outdoors, using only the tion has been used extensively in the literature for person
existing wireless infrastructure. It has been integrated with an tracking [2] and location-aware computing [3], it is unclea
existing laser-beacon localizer to aid during initialization and for whether a WiFi localization system alone will ever provide
site using a large forklift-type autonomous vehicle are presented. industrial environments. However, as a secondary lodidiza
system, WiFi signal strength information can be used to
generate a coarse global position estimate which can be used
|. INTRODUCTION to bootstrap the primary system.

. . . Although GPS can sometimes provide this secondary esti-
As autonomous vehicles play more prominent roles in

. : , ; mate, coverage is often unavailable inside buildings orrwhe
industrial environments, the importance of accuratelyedet . . . 4
o : S . the view of the sky is obstructed, and incorrect estimates ca
mining the location of the vehicle in the environment beceme . :
. . . . occur due to multipathing. Durrant-Whyte et al. have deter-
increasingly crucial. For safe and reliable performance, a . : d S o
s . ._ . mined that the physics of GPS, combined with insufficient
autonomous vehicle should not rely on a single localization . ; . . )
coverage in Australia, prevent it from being reliable ertoug

solution alone, as a failure at a critical point could bringo be used as a stand-alone navigation sensor in industrial

down the entire system. Thus, there is a need for redundant__ .
osition estimators that can be utilized in the event of sacenanos [4]. . - - . .
P We have designed the WiFi position estimator for use in

. X T - 'Bhe of several scenarios. Firstly, it can be used as anlinitia
available approaches for vehicle localization includirsgng estimate during the initialization of a primary localizati

GPS, artificial or natural landmarks, and visual maps. Hovg— stem. This can speed up early convergence and reduce
ever, many of these approaches require expensive equipn}é/nt )

or considerable effort in sensor processing or environme € possibility of multiple hypotheses due to environment
modeling P 9 Q)}mmetries. Secondly, the WiFi localizer can be polled when

iEi devi h iahtweiah q ﬁhe primary localizer's confidence drops below a threshold,
'In contrast, WiFi devices are cheap, lig tweight, an re|r'1dicating that it may be lost. In this case, the WiFi locatiz
atively low-power [1], and WiFi access points are becoming,, »qain provide a position estimate to re-seed the local

increasingly ubiquitous in many of the environments “_)b_(l):f?osition estimator. Lastly, the estimate from the WiFi lzer
operate in (offices, schools, industrial work-sites). A WiF.a he sed as an independent estimate to detect possible
Iocghzer can be an integral part of a robust navigationesyst anomalies occurring in other localization systems.
as it has several advantages: Our approach to WiFi localization is based on the work
« It is an efficient method for global localization sinceof Ferris, Hihnel, and Fox [5] and is tailored to industrial
access points are uniquely identifiable; environments. The two main components of the WiFi lo-
« WiFi can be used to localize both indoors and outdoorsalization system are a WiFi map generated using Gaussian
« No modifications to the environment are required, instegtocesses, and a localizer which uses Bayesian filtering. Th
relying on the existing infrastructure; resulting system is analyzed against ground truth measure-



the calibration methods presented require an extensive dat
collection step. In one approach, WiFi data is gatheredyever
few meters in four different orientations [2].

We wish to take advantage of the benefits that the mapping
methods provide without a need for an intensive data col-
lection process. Fortunately, Gaussian process-basepimgap
methods provide a solution to this problem (as well as many
RIS, o : others). Several signal strength-based localizationegyst
that utilize Gaussian processes have already been dedelope
and this method has proved to be very well-suited for the
problem domain [5], [10]. Gaussian processes (GP) and their

ments to determine the expected accuracy. Finally, thesyst2dvantages are introduced in the next section.
is integrated with an existing laser-beacon localizer tge
an estimate used during initialization or after a failurehie

Fig. 1. The autonomous Hot Metal Carrier (HMC)

I1l. GAUSSIAN PROCESSREGRESSION

primary localizer. Gaussian processes offer many advantages that make them
Our paper continues as follows: Section Il discusses rtlatguited for a localization system that utilizes WiFi signal
WiFi-based localization research, and Section Il briefigtrength [5]. Firstly, they are non-parametric, so a model

describes Gaussian process regression. Sections IV andh®t can correctly fit the data is not required [11]. Because
discuss the mapping and localization phases, respectiady GPs place a prior over the distribution of functions, many
present experimental results in Section VI, and finally elodighly non-linear models can emerge from GP regression [11]
with a discussion of our future plans and some conclusion§econdly, they are continuous. Training data does not need
to be gathered at regularly spaced intervals, nor does the
environment necessarily need to be discretized during-loca
Due to the relatively coarse accuracy of most existing WiFzation. Training data can come from arbitrary points, and
position estimation systems, many have been designed wifiedictions can be generated for any point in the enviroimen
smart environments and context-aware computing in mingurthermore, the predictions will use a maximal amount
Two broad categories of localization systems using Wikf the training information, as opposed to a small number
signal strength have emerged (algorithms using other fegituneighbors [11]. Thirdly, GPs correctly handle uncertaiirty
such as time or angle of arrival are not covered here fgbth the process and the estimation. This is especiallyulisef

Il. RELATED WORK

brevity): because WiFi signal strength measurements are very noisy
« Modeling, in which an explicit model of the expecteddue to various phenomena such as diffraction, scattering,
signal strength is determined. reflection, and absorption [8].

« Mapping, where labeled training data is gathered to A Gaussian process essentially defines a probability dis-

generate a map which is used during localization. tribution over functions. We wish to generate a function

Although systems based on modeling methods have shox:) that makes predictions for all possible inputs.
to be effective at determining a user’s location [3], [leyh We use a training data séP = {(x;,y;)|i=1,...,n}
often rely on extensive knowledge of the environment (sisch gonsisting ofz observations iR drawn from a noisy process
Access Point positions or the location and number of wallg) = f (x:) + ¢, wheree is additive Gaussian noise with zero
to predict the signal strength [7], [8]. In one approach, th&ean and variance?. For notational simplicity, the inputs of
parameters of the proposed signal strength attenuatioreimo#e training set are grouped intodax n matrix X, and the
are empirically determined, and this information is used ®@pservationg; are grouped into a vectgy.
triangulate the user’s position around a university canjfs ~ To generatef(x..), GPs rely on a covariance function kernel

Mapping methods introduce a calibration step, where 14(x;,X,) that specifies how the values at different points are
beled data is gathered prior to the system’s operationo\Mari correlated. Generally, points with inputsthat are close to
properties of the received signal can be stored for use gluri@ach other are likely to have similar target valge3he user
localization, including raw signal strength [2], histogra[9], has many choices for this kernel (see [11] for examples), and
and Gaussians [1]. For example, one approach exhaustivefy have chosen the popular squared exponential kernel:
compares the input signal strength against the training fdat 1
all locations to determine a set of nearest neighbors, whichk (x,,x,) = UJ% exp (—2 (xp — xq) TM (x, — xq)>, (1)
are interpolated to generate a position estimate [2].

Given enough training measurements and even coveraglereM is a matrix whose diagonal elements are set to the
the mapping-based methods are generally quite accurate, eespective length scaleg;l: M = diag (2)_2. The hyperpa-
have the advantage of using empirical data which may tmneters(r} and £ are the signal variance and characteristic
hard to model using analytical models. However, some t#ngth scales, respectively.



Fig. 2. Signal strength mean prediction — eq. (4b). Fig. 3. Signal strength variance prediction — eq. (4c).

Becausey is actually a noisy observation of the true value The map is learned off-line. Although the MAC address
f(x), we must add a term to account for observation noise af each Access Paint (AP) is known, its location is not used.

the covariance function: The parameters of the Gaussian process are learned, aatl sign
B 9 strength estimates are generated for a uniformly-spaded gr
coV (Yp: Ya) = k (Xp, Xq) + 07.0pg (@) of points in the environment. This process is repeated amce f

where §,, is 1 if p = ¢ and 0 otherwise. Note that the each access point (GP parameters are re-learned for each AP
covariance between the outputs is written as a functionef tko account for differences between them), generating ay man
inputs, emphasizing the non-parametric nature of Gaussi@aps as there are detected access points in the environment.
process regression. Although this map-making process is relatively slow (a few

Again for notational convenience, we rewrite the covarPours on a standard desktop computer), it is performedruf-|
ances as matrices and vectors, such flids a matrix of the and only done once. An example WiFi map for one access
covariances evaluated at all pairs of training points, knd point is shown in Fig. 2 (mean), and Fig. 3 (variance). As
is a vector of the covariances betweenand then training expected, the mean generates a prediction for signal streng
inputs. This compact form allows us to rewrite equation (Znd the variance is lower in areas where more training data
into: was available.

cov(y) = K + 021 (©)]
V. SEQUENTIAL MONTE CARLO LOCATION ESTIMATION

We can then generate the posterior distribution over func-

. ) ) . o The localization system uses a Sequential Monte Carlo
tions for arbitrary pointsx, given the training dataX and

) Localization algorithm [12] consisting of 1000 particlebiah
Y are initially distributed uniformly at random over the en-
p(f (%) | %, X,y) NN(MX*,Ui*),With (4a) tire elnvironm(re]ntf. Only particls positior|15 are tracaked, as
-1 signal strength from an omnidirectional antenna does not
pae. = K, <K+JTQLI) y (4b) provide bearing information. During localization, incomi
on. =k (xe, %) — K (K + a,%])_l k., (4c) WiFi packets change the likelihood of all particles. Forteac
particle, the predicted signal strength mean and variance
are extracted from the generated map associated with the
cqtrresponding access point. These are used to calculate the
Reasurement likelihood:

This distribution provides us with the necessary likelidloo
model that will be used for localization in Section V.

Because the covariance function is such an integral part
GP regression, the + 2 free hyperparameters{, o7, and

£ = {{,. 4}) greatly affect the characteristics of the predicted 1 (2t — b, ) 5
signal. Fortunately, these hyperparameters can be ledoyed P (zfx.) o 2mo2 AP~ 202 ’ (5)
maximizing the log marginal likelihood of the observations _ . _ _

conditioned on the hyperparameters [11]. where z; is the received signal strength at timeand py,

andoZ are the mean and variance at position predicted

IV. GAUSSIAN PROCESSES FORNIFI MAP CREATION by equation (4).

To create a WiFi map, we must first collect our training In this analysis, we have chosen not to use vehicle motion
sampleD, consisting of signal strength measuremen)sas- information under the assumption that for our generic WiFi
sociated with positions in the environmesd) ( These training localization system, this information may not be available
points need not be grid aligned or sampled in any specific wajherefore, in order to keep our WiFi-based system com-
which enables us to gather the data required to train a m@lptely independent, the motion model is instead replaced
during normal vehicle operation. However, any remote arebg random particle motion. Periodically, each particle is
that will be of interest during localization should be caer randomly perturbed, effectively spreading the particleudl
(at least partially); a simple user check of the trainingadat in all directions. Although some of the particles are moving
sufficient to determine adequate map coverage. in the opposite direction to the vehicle’s actual motion, in



strategic locations. Most access points are omnidireatjon
while some are directional to cover narrower regions such as
along roadways.

In both experiments, the site has been partitioned inteethre
areas with distinct features based on environment type and
WiFi coverage.

o Area 1 consists of a large open area surrounded by
industrial sheds, one of which the vehicle can drive
Fig. 4. Map of the test site, spanning approx. 250m by 400mese@oints inside. Several access points are in this region, including

locations are shown with black diamonds. several outdoor omnidirectional access points.

o Area 2 consists of a road with buildings on both sides.
Although many access points are in this area, most are
indoors and do not offer a wide coverage area. GPS
reception is poor in this area due to a very narrow view
of the sky and multipathing from buildings.
Area 3 consists of a road surrounded by vegetation. Very
few wireless access points are in this area, but there are
several directional access points that cover the road only.

practice, WiFi packets are received often enough that the
likelihood model combined with particle resampling cothgc
track the vehicle location.

The system also needs to be robust to the kidnapped robot
problem. Although it is unlikely that anyone will try to kidp
a 20-ton industrial vehicle, there can be cases where WiFi
information may not be available for a period of time, or the

. . : . . GPS reception in this area is generally reliable.
WiFi location estimate could be incorrect. For this reason,_l_he rimary test vehicle is the Hot Metal Carrier (HMC)
a small number of particles are randomly dispersed in the P y '

environment instead of being propagated. These particies 4 20-ton forklift-type vehicle (shown in Fig. 1) that has bee
) . g propag . P automated by the Autonomous Systems Lab at CSIRO [13].
usually discarded during the next evaluation step, but th;?

are critical for the robustness of the WiFi position estiiorat ¥“S type of vehicle is gsed n aluminum smelters,_ where .'t
system transports molten aluminum in a large metal crucible. This

crucible weighs two tons and can transport eight tons of
V1. EXPERIMENTAL RESULTS molten aluminum at 700°C. Because the vehicles are perform-

We have conducted experiments to evaluate the accuracyt this task repeatedly, they are a prime target for autmmat
the WiFi-based localization system alone, and we have alg§Wever, because a potentially non-localized vehicleeres
integrated it with an existing localization system so thagin obvious safety risks, the reliability of the localizatiopstem
be used during initialization or for failure recovery. Wegent s of critical importance.
two experiments in this section. The first is a demonstration laser beacon-based localization system for the HMC was
of the WiFi localizer accuracy. After generating a map USin@reviously developed and found accurate to well within a
training data and GP regression, the WiFi localizationesyst Meter [13]. It utilizes reflective beacons that are insthlle
is tested and compared against ground truth data obtainedhe environment at surveyed locations. The laser-beacon
from a highly precise laser-beacon localizer. In the secofRfalizer does not search the global space to find possible
experiment, we purposefully create faults in the laserlipea locations, and it requires an initial estimate of its looati
and autonomously use the global WiFi position estimate a¢/on start-up (which may occur inside or outside a shed).

seed for the laser localizer to re-initialize itself. It may also require re-initialization if it becomes lost. €rh
) WiFi localizer is ideally-suited to aid the laser systemhirge
A. Experimental Setup situations as it does not share any common failure modes.

The test area is an industrial work site approximately 250mWiFi signal strength is acquired using a laptop equipped
by 400m (shown in Fig. 4) which is part of the Queenslandith a PCMCIA Netgear WiFi card. The card has been
Center for Advanced Technologies (QCAT). Two types ahodified to use an external omnidirectional antenna which
buildings are situated on site: multi-storied offices angida is mounted on the top of the HMC. Kismet [14], used in
industrial sheds. There is also an area without buildingis passive mode, sniffs wireless packets’ MAC addresses
surrounded by vegetation. Industrial vehicles such adiftrk and signal strengths, passing this information to the ipeal
and trucks operate on the roads around the site, and ther®X, a distributed shared memory architecture, is used to
also considerable pedestrian traffic. share information between the various software systems on

A wireless network consisting of many different accesthe vehicle [15].
points provides continuous network access to QCAT staffIn our experiments, the vehicle was driven manually to
and mobile robots over the entire site. The majority of thgather WiFi data for the mapping and localization data sets.
access points are located indoors for good coverage in thkhough both cover the same general regions (roads and
offices (although those APs can still be detected outdoorsheds), the two data sets were taken many days apart and at
and there are also several access points located outdoordifferent times of the day. Additionally, the exact pathdak



TABLE | Histogram of Mean Particle Error

WIFI LOCALIZATION ACCURACY 600
500 [

Area Localizer Error (m) Median num. | Distance Time 400
Mean Median | of visible APs | traveled (m)| (sec) -

1 7.4 5.7 3 113 137 3%

7.8 54 5 220 230 200

3 22.3 13.5 3 338 270 100

. M

0 5 10 20 25 30

15
Error (m)
was slightly different, as the vehicle could have been dgyvi

. . . . . . Fig. 5. Histogram of the mean error in Area 1
on the opposite side of the road or in the opposite direction g g

that the training data was collected. However, becauseeof th Histogram of Visible Access Points
continuous nature of the GP regression, this does not greatl ijzz
affect us. 200
B. WiFi Location Estimation Accuracy 2
2 800)
For each of the three areas defined in Section VI-A, WiFi © oo
data was collected using the HMC. The accuracy of the 400
localizer is examined in each of the three regions, and is 200
summarized in Table I. The WiFi localizer estimate is taken a o ]

2 3 4 5 6
Number of Detected Access Points

the mean of the particles, and ground truth is obtained using
the laser localizer. The WiFi localizer error is computedat rig. 6. Histogram of the number of simultaneously visible idist access
rate of approximately 60Hz using the Euclidean distance pgnts in Area 2 (using a three-second window)
the error metric. The approximate distance traveled isrtepgo
(taken from wheel odometry), as well as the time of each run.
During each of the three data runs, the vehicle was stoppdocalizer failure (which can be triggered manually during
once or twice. testing), the laser localizer uses the global estimate fitoan
The mean and median of the position errors vary in ea¥MiFi system as a seed for an initial estimate region in which t
region. This is due to the nature and distribution of the ssceséarch. The laser-localizer particles are uniformly diated
points available in each of the three regions. For exampffound the seed point (vehicle headings are randomly asign
Area 1 contains several omnidirectional access pointséocaSince no heading information is provided by the WiFi system)
on top of buildings. A histogram of the errors in Area 1 igvhere the size of the region is specified by the WiFi system’s
shown in Fig. 5. Area 2 has a large number of access poirlf@¢alization uncertainty. This uncertainty is inverselppor-
but many are within buildings, greatly reducing their rangéional to the product of the number of visible access points
Area 3 has the greatest error of the three regions. We suspitd the accepted packet rate.
this is because the access points in this region are spacelp the next experiment, the laser-beacon localizer was set
far apart and directional. However, because Area 3 has féyan erroneous location and the WiFi localizer was used to
buildings and other obstructions, GPS is readily availatsie Pootstrap it back to the approximately correct area where it
the event that a secondary position estimate is require@ G§ould re-localize. A time sequence of the event is shown in
can be used instead of the WiFi-based estimate. Fig. 7. The laser localizer also uses a particle filter which
The number of visible access points is tracked by determii§- Shown in red in the figure. Initially, a failure is induced
ing how many unique APs in the map have been detected (sB¥tmoving the particles to a constrained region (the square)
a packet) at least once in the past 3 seconds. This chane§i9. 7(a). In Fig. 7(b), bootstrapping has occurred and
over time and is correlated with the properties of the déffer particles are moved to a new seed area distributed around the
regions. Fig. 6 shows a histogram of the number of visible AP¥IFi position estimate. In Figs. 7(c) and 7(d), the vehicle
during a run in Area 2. In most cases, the localizer is moh@&s moved and the laser localizer has locked onto the correct
accurate when more access points are visible. Note thaisthi¥ehicle location.
not due to triangulation (which would be used in a modeling This simple example demonstrates how the bootstrapping

technique), but the fact that the likelihood models comgietm Process works. We have conducted many successful trials of
each other. In practice, an accurate location estimate eanthis technique onboard the HMC which removes the constraint

achieved using two or three access points. of having ana priori location estimate for seeding the laser-
) ) beacon localizer, or having to wait for the system to corserg
C. System integration if the particles are initialized over the entire environmen

The global WiFi position estimator has been integratezhvironments with high symmetry, convergence may not occur
with the laser-beacon localizer on the HMC. In the event efithout a global position estimate. Fast and accurate con-



(a) Localizer failure (triggered) (b) WiFi estimate merged (c) Bootstrapping in progress (d) Laser localizer converged

Fig. 7. Time sequence of a re-initialization in Area 1. The Hiarked with an 'X’) is moving towards the right of the compouiithe WiFi localizer
estimate is shown as the large diamond, and the laser-beacalizér particles are shown in red. The grid spacing is 10m.

vergence is necessary for autonomous vehicles operatingCiedric Pradalier helped develop parts of the software infras
industrial environments, since they should not move withotructure, and Frederic Moster created the Kismet interface
knowledge of their position. software. The authors also wish to thank Robert Zlot, Stephe
Although the laser localizer generally converges vemluske, and the anonymous reviewers for their comments.
quickly, there are cases where the bootstrapping can fail.
These are usually due to the inherent limitations of therlase
beacon system, such as when a small number of beacons HieA. Howard, S. Siddiqi, and G. S. Sukhatme, "An experimerstaidy

. . - - of localization using wireless ethernet,” Rroc. of International Conf.
detected, or when the environment is symmetric with respect "5 7204 sarvice Robotics, July 2003.

to orientation (for example, a road with very regular beacorp] p. Bahl and V. N. Padmanabhan, “RADAR: An in-building R&skd
placements). If the localizer fails to converge, a new WiFi user location and tracking system,”moc. of IEEE INFOCOM, 2000.

. kiAo At ; [3] A. Smailagic and D. Kogan, “Location sensing and privatyicontext-
estimate can be used for re-initialization once again. aware computing environmenifMreless Communications, | EEE, vol. 9,

VII. CONCLUSIONS ANDFUTURE WORK no. 5, pp. 10-17, October 2002.
[4] H. Durrant-Whyte, D. Pagac, B. Rogers, M. Stevens, and &mys,

We have demonstrated a mapping-based WiFi position esti- “An autonomous straddle carrier for movement of shipping doeta,”
mation system that can be used either independently or as an Robotics & Automation Magazine, IEEE, vol. 14, no. 3, pp. 14-23,
extra layer for another higher-resolution localizer.ily, the  5) g Ferris, D. Hahnel, and D. Fox, “Gaussian processes for signal
mapping phase uses a set of labeled training data and Gaussia strength-based location estimation,” finoc. of Robatics: Science and
process regression to create WiFi maps. The localizatiasgh _ Systems, August 2006.

- .[6] A. LaMarca, J. Hightower, |. Smith, and S. Consolvo, “Sklapping
uses these maps as the sensor likelihood model for thelpartlé in 802.11 Location Systems,” iroc. of UbiComp 2005: Ubiguitous

filter (with signal strength as the only sensor input). Computing, September 2005.

The WiFi system has been demonstrated on an autonomoifl M. Hassan-All and K. Pahlavan, “A new statistical moder fite

. . . . . SpecITfic Indoor radio propagation prediction based on geoa IB[D ICS

Hot Metal _Camer in an |ndustr|a_1l _enwronm_ent_. Th_e system 14 geometric probability,1EEE Trans. Wireless Commun., vol. 1,
has been integrated with the existing localization infrast no. 1, pp. 112-124, January 2002.
ture so that it can provide a global estimate during (ref8l YE'EE?M af{/tth-TDerIChy “/ﬁ fgySicalz mObiLf?;angcq%gqe' relcid
R LT . rans. . Technal., vol. 40, no. 2, pp. —482, .
)|n|t|aI|za.t|on, or resolve ambiguities due to enV|ronme_n 9] M. Youssef, A. Agrawala, A. Shankar, and S. Noh, “A Prolitic
symmetries. Furthermore, the results of the two localirati Clustering-Based Indoor Location Determination System,”J&om-
solutions can be cross-checked to increase redundancy. The Puter Science Department, Tech. Rep. CS-TR-4350, 2002.

. . . ] A. Schwaighofer, M. Grigoras, V. Tresp, and C. HoffmafiGPPS:
lack of common failure modes in the two systems increas § A Gaussian Process Positioning System for Cellular Netsjorin

the fault tolerance of the overall system. Advances in Neural Information Processing Systems, 2003.

Future work on the localization system will focus on refink1] ﬁ E_- Rﬁsmu_ssen G?Td PC- K. zlbo\éV'"'amQaUSS'an Processes for
. . . - . . achine Learning. ress, .
ing the 'ntegr.atlon of the WiFi localizer and the. laser |@‘I, D. Fox, S. Thrun, W. Burgard, and F. Dellaert, “Partiéileers for mo-
so as to provide as much redundancy as possible. Additionall ~ bile robot localization"Sequential Monte Carlo Methods in Practice,
we will investigate methods to continuously adjust the mat%] iOOTO- C. Pradal 43 Roberts. “Aut —

: : f : . . Tews, C. Pradalier, and J. Roberts, “Autonomous ho rrier,”

during Iocall_zatlon to offset Iong-_te_rm Ch_ang_es in the Veiss in Proc. of International Conf. on Robotics and Automation, April 2007.
network. This would make the WiFi localization system rabusi14] Kismet wireless. http://www.kismetwireless.net.
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